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Forward

“Not a word of Landau and not a thought of
Lifshitz” —Anonymous

This old witticism on the writing of the classic Russian physics texts has held surprisingly
close to reality in the process of creating this work of Dr. Petsev’s and mine. Over the past
two years, I have had the pleasure of assisting in the teaching of Methods of Analysis in
Chemical and Nuclear (and now Biological) Engineering (ChNE 525) at the University of
New Mexico. In the Fall of 2012, almost on a whim, I began taking notes of the course
in LATEX primarily for the excuse of exposing myself to Dr. Petsev’s method of teaching
this subject (also for the amusement of doing something ridiculously challenging!). I soon
realized the potential value in this clear means of note-taking, as it became my way of
helping to give an update of material covered in class whenever a student was unable to
attend. Furthermore, the complete set of semester notes was sent out to all students at the
end of the course, and I have known several who found the notes useful in studying for their
comprehensive examinations.

The result of the work done in 2012 forms the bulk of these notes. These portions pri-
marily sketch the equations used in the class as a complete outline of the material. However,
lectures which I have had extra time with reviewing or watching digitally have had the
chance to be augmented such that some—or in a few cases a significant quantity of—the
material discussed both on the board and orally in the lecture is included in its full essential
content in the text. In general, each section is done very much in the style of a lecture with
as many of the small steps needed in a strong derivation included to make the mathematical
manipulation as easy to follow as possible.

A number of improvements still need to be made to this document. Regretfully, figures
tend to be the most difficult to recreate digitally; hence, many of the diagrams that elucidate
the problems at hand are not incorporated into the notes at this point in time; those that
are, I am certain will be helpful. Few tables or formal citations are included. Many of the
macros used in the production of this document are in the process of being superseded by
better ones. Finally, it would be especially beneficial to get a thorough transcription of the
oral portion of the lectures added in along with the presented equations. As this is very
much a work in progress, feel free to give suggestions, comments, and especially corrections
about anything in this document.

The primary focus of an advanced course in engineering mathematics is to give the stu-
dent a strong foundation in the application and analytical solution of ordinary and partial
differential equations to engineering and physics problems. Thus, these topics are the central
and dominant subject areas described. However, additional topics such as geometric trans-
formations, integral transforms, perturbation theory, and (soon to be added) statistics are
also introduced. The student is encouraged to pursue computational methods to enhance
their understanding of PDEs and as a complement to analytical methods.

—Eric M. Benner, August 25, 2014
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UNIT 1

Chapter 7—Vector Calculus

1.1 Lecture 1: August 20, 2012

Introduction to Fields

Reading and knowing up through Chapter 5 of the textbook by McQuarrie is prerequisite to
the following material.

Fields

• e.g. Pressure, Electric, Magnetic, Electrostatic (Potential), etc. . .

• Scalar Field

– 1 number at a point

– Electrostatic, Pressure, temperature, concentration

• Vector Field

– 3 numbers describe point

– Fluid velocity (magnitude & direction)

– Electric field

Gradients

• Vector of the direction of greatest change

• Turns scalar into vectors

• Often referred to as “grad”, “del” or the symbol itself as “nabla”

• Expressed in 3D cartesian coordinates as:

∇ =
∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂ (1.1.1)

Gradients applied to a vector quantity turns into a tensor.

1



Petsev and Benner Unit 1. Chapter 7—Vector Calculus

Contours

Contours are examples of scalar fields. The gradient is normal to the contour of no change.
A line of contour is defined by,

f(x, y, z) = C.

Observe that the gradient is a operator where,

∇φ 6= φ∇.

A general vector in cartesian coordinates,

A = Axı̂ + Ay ̂ + Azk̂.

Operating with the gradient on the vector A,

∇ ·A = ı̂ · ı̂ ∂Ax
∂x

+ ̂ · ̂ ∂Ay
∂y

+ k̂ · k̂ ∂Az
∂z

(1.1.2)

= 1
∂Ax
∂x

+ 1
∂Ay
∂y

+ 1
∂Az
∂z

=
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(1.1.3)

This is due to the fact that a unit vector multiplied by itself is simply 1.

The curl of a vector (rotation)

∇×A =

(
∂Az
∂y
− ∂Ay

∂z

)
ı̂ +

(
∂Ax
∂z
− ∂Az

∂x

)
̂ +

(
∂Ay
∂x
− ∂Ax

∂y

)
k̂ (1.1.4)

=

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ . (1.1.5)

Surface Integral

ˆ
S

A · n dS ≡
ˆ

A · dS (1.1.6)

only that portion “projected” on the surface normal goes through the surface.

Gauss Divergence Theorem

For the integral over a closed surface we represent by
¸

or
‚

.

˛
S

A · dS =

ˆ
V

∇ ·A dV (1.1.7)

2



1.1. Lecture 1: August 20, 2012 Methods of Analysis in ChNE

We shall now derive this given that dV = dx dy dz in Cartesian coordinates,

ˆ
V

∇ ·A dV =

ˆ
x

ˆ
y

ˆ
z

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
dx dy dz (1.1.8)

=

ˆ
x

ˆ
y

ˆ
z

∂Ax
∂x

dx dy dz +

ˆ
x

ˆ
y

ˆ
z

∂Ay
∂y

dx dy dz

+

ˆ
x

ˆ
y

ˆ
z

∂Az
∂z

dx dy dz

Observing that
´
x

dAx
dx

dx =
´

dAx,

ˆ
V

∇ ·A dV =

ˆ
y

ˆ
z

Ax dy dz +

ˆ
x

ˆ
z

Ay dx dz +

ˆ
x

ˆ
y

Az dx dy

=

ˆ
y

ˆ
z

A · nx dy dz +

ˆ
x

ˆ
z

A · ny dx dz +

ˆ
x

ˆ
y

A · nz dx dy

Returning to the potential,

ˆ
V

dφ

dt
dV =

˛
S

A · n dS (1.1.9)

=

ˆ
V

∇ ·A dV (1.1.10)

So,

∂φ

∂t
=∇ ·A (1.1.11)

On a note of Thermodynamic importance. Entropy always increases. 2nd Law of Ther-
modynamics (expressed without time derivative), dS ≥ 0.

Laplace operator

The Laplacian or Laplace operator is ∇2 or alternatively represented as ∆.

∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.1.12)

The Laplacian of a scalar field is also a scalar quantity.

lim
dx→0

[
φ(x)− 1

2
(φ(x− dx) + φ(x+ dx))

dx2

]
=
∂2φ

∂x2
(1.1.13)

If ∂2φ
∂x2

> 0 we observe a positive curvature.

3



Petsev and Benner Unit 1. Chapter 7—Vector Calculus

Potential Flow

Conservative forces, potential is a conservative force. Note that friction is non-conservative;
it has a loss term due to heat. If∇×b = 0 this implies a conservative form (no friction), and
is a necessary & sufficient condition for the existence of a potential. We will now demonstrate
this.

(∇×A)x = ı̂

(
∂Az
∂y
− ∂Ay

∂z

)
(1.1.14)

let A =∇φ, this gives Az = ∂φ
∂z

, and Ay = ∂φ
∂y

.

(∇×A)x = (∇×∇φ)x (1.1.15)

= ı̂

(
∂

∂y

(
∂φ

∂z

)
− ∂

∂z

(
∂φ

∂y

))
= ı̂

(
∂2φ

∂y∂z
− ∂2φ

∂z∂y

)
≡ 0 (1.1.16)

The same argument holds for (∇×A)y and (∇×A)z. Thus, we observe,

∇×∇φ ≡ 0 (1.1.17)

∇ ·∇×A ≡ 0 (1.1.18)

Line Integrals

Line integrals are extremely useful and important for the calculation of thermodynamic and
mechanical work. dw = F · dr.

ˆ
dw =

ˆ
F · dr (1.1.19)

=

ˆ
C

Fx dx+

ˆ
C

Fy dy +

ˆ
C

Fz dz (1.1.20)

We know also that ˆ
F · dr =

ˆ
F · dr

dt
dt

since dr
dt

dt = dr.

Now,

F =∇φ (1.1.21)

=
∂φ

∂x
ı̂ +

∂φ

∂y
̂ +

∂φ

∂z
k̂ (1.1.22)

4



1.1. Lecture 1: August 20, 2012 Methods of Analysis in ChNE

with dr = ı̂ dx+ ̂ dy + k̂ dz,

ˆ
∇φ · dr =

ˆ (
∂φ

∂x
ı̂ +

∂φ

∂y
̂ +

∂φ

∂z
k̂

)
·
(
ı̂ dx+ ̂ dy + k̂ dz

)
=

ˆ (
∂φ

∂x
ı̂ · ı̂ dx+

∂φ

∂y
̂ · ̂ dy +

∂φ

∂z
k̂ · k̂ dz

)
=

ˆ (
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz

)
(1.1.23)

Thus, as a definite integral,

ˆ b

a

F · dr =

ˆ b

a

dφ (1.1.24)

= φ(b)− φ(a) (1.1.25)

5



Petsev and Benner Unit 1. Chapter 7—Vector Calculus

1.2 Lecture 2: August 22, 2012

Potential Field

Reviewing from last lecture, ˆ
c

F · dr =

ˆ b

a

dφ = φ(b)− φ(a) (1.2.1)

We see that any path will give the same result if we are in a potential system.

Application to Thermodynamics

dU = T dS − p dV

where S ≡ entropy . If S is constant you eliminate all paths but one. Then, with w ≡ work,ˆ
dw = −

ˆ
p dV (1.2.2)

If the path begins and ends at the same point
¸
p dV = 0, and we see that there is no net

work done on the cycle. Potential Forces are always conservative.

Example: Newton’s Second Law

Note: dr = dr
dt

dt which may be decided by dt. Also, dr
dt

= v and v · v = v2.

m
d2r

dt2
= F = −∇φ (1.2.3a)

m

ˆ
d2r

dt2
· dt = −

ˆ
∇φ dt

m

ˆ
d2r

dt2
· dr

dt
dt = −

ˆ
∇φ dt

m

2

ˆ
d

dt

(
dr

dt
· dr

dt

)
dt = −

ˆ
∇φ dt

m

2

ˆ
d

(
dr

dt

)2

=
mv2

2
+ C (1.2.3b)

Now for r = r(t), a function of time, dr = dr
dt

dt. With dr = dx ı̂ + dy ̂ + dz k̂

−
ˆ
∇φ · dr = −

[ˆ
∂φ

∂x
dx+

ˆ
∂φ

∂y
dy +

ˆ
∂φ

∂z
dz

]
= φ+ C2 (1.2.4)

defining C = C1 + C2

mv2

2
− φ = C (1.2.5)

Thus, we have shown the Energy Conservation Law.

6



1.2. Lecture 2: August 22, 2012 Methods of Analysis in ChNE

Gauss Law of Electrostatics
Example of a line integral

Gauss law of electrostatics describes the relation between charged particles;

E =
qm

4πε0r2
. (1.2.6)

For a real medium ε0 → ε0ε, where ε is about 8 for room temperature air, and only 1 in a
vacuum. ‹

S

E · n dS =
q

ε0

(1.2.7)

Note that q, 4, π, ε0, are constants so we will leave them out for now.‹
S

m

r2
dS =

ˆ
V

∇ ·
(m

r2

)
dV (1.2.8)

With r = (x, y, z)

∇ · (rf(r)) =
∂

∂x
(xf(r)) +

∂

∂y
(yf(r)) +

∂

∂z
(zf(r)) (1.2.9)

Each of these terms may be simplified similarly as,

∂

∂x
(xf(r)) = f(r) + x

∂f

∂x

= f(r) + x
∂f

∂r

∂r

∂x

Recall, r =
√
x2 + y2 + z2

∂r

∂x
=

x√
x2 + y2 + z2

=
x

r
(1.2.10)

Thus,

∇ · (rf(r)) = 3f(r) + r
df

dr
(1.2.11)

Note: ∇ · r = 3, n = r
r

f(r) = rn−1

Substituting,

∇ ·
(
r rn−1

)
=∇ · (n rn)

= 3rn−1 + r ·∇rn−1

= 3rn−1 + (n− 1)rn−1

= (n+ 2)rn−1

= 0 (1.2.12)

7



Petsev and Benner Unit 1. Chapter 7—Vector Calculus

Evidently, n = −2 ˆ
0 dr = 0

Typically, r = 0 is the location of the charge.ˆ
V

∇ ·
( n

r2

)
dV =

‹
S

n

r2
· dS (1.2.13)

=

ˆ
n

r2
· dS +

ˆ
n

∇ta2
dS2 (1.2.14)

Now observe that dS = n dS, dS = ∇ta2 dΩ, n · n = 1. When you integrate counter-
clockwise,

−
ˆ
S2

n · n
∇ta2

∇ta2 dΩ = −
ˆ

dΩ

= 4π (1.2.15)

ˆ
V

∇ ·
( n

r2

)
dV =

{
0 if r = 0 is not included,

−4π if r = 0 is included
(1.2.16)

‹
S

E · n dS =
−4πq

4πε0

=
−q
ε0

Which gives the Poisson Equation result,

∇ · E =
−q
ε0

. (1.2.17)

Radial Potential

The potential is V (r). What is the gradient of the function? ∇V (r) =? We know r =√
x2 + y2 + z2 .

∂V (r)

∂x
=

dV (r)

dr

∂r

∂x
=
x

r

dV (r)

dr
(1.2.18)

which additionally gives

∂V (r)

∂y
=

dV (r)

dr

∂r

∂y
=
y

r

dV (r)

dr

∂V (r)

∂z
=

dV (r)

dr

∂r

∂z
=
z

r

dV (r)

dr

Thus,

∇V (r) =
(x
r
ı̂ +

y

r
̂ +

z

r
k̂
) dV

dr

=
r

r

dV

dr

= n
dV

dr
(1.2.19)
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Laplacian of the reciprocal of the radius

Now find ∇2 1
r

=?

∇2 1

r
=∇ ·

(
∇1

r

)
=

ˆ
∇ ·

( n

r2

)
dV

=

{
−4π including r = 0

0 excluding r = 0
(1.2.20)

−4π

ˆ
δ(r) dV =

{
−4π including r = 0

0 excluding r = 0
(1.2.21)

or

∇2 1

r
= −4π δ(r) = −4π δ(x) δ(y) δ(z) (1.2.22)

For this we observe that we have a simple Greens function,

G(n) =
1

−4πr
(1.2.23)

Green’s function method of solving differential equation ∇2G = δ(r), where

F (r) =

ˆ
G(r − r′) dr′ dr (1.2.24)

Gradient Transposition

Prove,
ˆ
V

A(r) ·∇f(r) dV = −
ˆ
V

f(r)∇ ·A(r) dV (1.2.25)

A, f vanish as x→∞
ˆ
x

ˆ
y

ˆ
z

(
Ax

∂f

∂x
+ Ay

∂f

∂y
+ Az

∂f

∂z

)
dx dy dz =

ˆ
y

ˆ
z

(ˆ
x

Ax
∂f

∂x
dx

)
dy dz

+

ˆ
x

ˆ
z

(ˆ
y

Ay
∂f

∂y
dy

)
dx dz

+

ˆ
x

ˆ
y

(ˆ
z

Az
∂f

∂z
dz

)
dx dy

Now, with the first term of the following equation going to zero,
ˆ
x

Ax
df

dx
dx = [Axf |+∞x=−∞ −

ˆ
x

f
dAx
dx

dx . (1.2.26)
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So the earlier equation now simplifies to

=

ˆ
y

ˆ
z

(ˆ
x

f
∂Ax
∂x

dx

)
dy dz +

ˆ
x

ˆ
z

(ˆ
y

f
∂Ay
∂y

dy

)
dx dz +

ˆ
x

ˆ
y

(ˆ
z

f
∂Az
∂z

dz

)
dx dy

which further goes to

= −
ˆ
y

ˆ
z

(ˆ
x

f
∂Ax
∂x

dx

)
dy dz +

ˆ
x

ˆ
z

(ˆ
y

f
∂Ay
∂y

dy

)
dx dz +

ˆ
x

ˆ
y

(ˆ
z

f
∂Az
∂z

dz

)
dx dy

= −
ˆ
x

ˆ
y

ˆ
z

f

(
∂Ax
∂x

+
∂Ay
∂y

∂Az
∂z

)
dx dy dz

= −
ˆ
x

ˆ
y

ˆ
z

f∇ ·A dx dy dz

= −
ˆ
V

f(r)∇ ·A(r) dV (1.2.27)

Green’s Theorem

When given P (x, y), Q(x, y), and

˛
c

F(r) · dr =

˛
[P dx+Q dy] . (1.2.28)

Prove,

˛
P dx+Q dy =

¨ (
∂Q

∂x
− ∂P

∂y

)
dx dy . (1.2.29)

To be finished next week. . .
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1.3 Lecture 3: August 27, 2012

Notes about class

• TA Office Hour: 11 am Thursdays.

• Homework questions go to Dr. Petsev. Trying to keep the questions and what students
know fair and equal.

• TA: for misunderstandings on grading and questions

Greens Theorem, cont.

In an x-y plane with a closed contour. When P (x, y);Q(x, y), given˛
c

F(r) · dr =

˛
[P dx+Q dy] . (1.3.1)

We want to describe the contour as a function y(x). The following is Greens theorem;˛
P dx+Q dy =

¨ (
∂Q

∂x
− ∂P

∂y

)
dx dy . (1.3.2)

We outline the proof below.¨
∂Q

∂x
dx dy =

ˆ
y

[ˆ
x

∂Q

∂x
dx

]
dy (1.3.3)

=

ˆ D

B

Q(y, x2(y)) dy −
ˆ B

D

Q(y, x1(y)) dy

=

ˆ D

B

Q(y, x2(y)) dy +

ˆ D

B

Q(y, x1(y)) dy

=

˛
Q dy (1.3.4)

Following similar arguments,
¨

∂P

∂y
dx dy =

ˆ C

A

[P (x, y2(x))− P (x, y1(x))] dx

= −
ˆ C

A

P (x, y2(x)) dx−
ˆ A

C

P (x, y1(x)) dx

= −
˛
P dx (1.3.5)

Stokes Theorem

A similar theorem known as Stokes theorem;˛
C

v · dr =

¨
S

(∇× v) · n dS (1.3.6)
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Tensors and Tensor Algebra

Tensors are a generalization of scalars, vectors, square matrices, etc.

• Scalar: Tensor of order (rank) 0

• Vector: Tensor of order 1

In three-dimensional space we have a = (a1, a2, a3). Tensors of higher orders exist.
Transforming from coordinates of (x1, x2, x3) to (x′1, x

′
2, x
′
3). These axes correspond by

cosines when the two coordinates are arbitrary rotations of each other. So we define a
tensor lij, cosine of the angles between the old axis (Oi, i = x1, x2, x3) and the new one
(Oj, j = x′1, x

′
2, x
′
3). This gives the transformation to be;

x′j = l1jx1 + l2jx2 + l3jx3 (1.3.7)

Transforming back to the original axes,

xi = li1x
′
1 + li2x

′
2 + li3x

′
3 (1.3.8)

Rule of repeated indices (Cartesian summation notation):

lijxi =
∑
i

lijxi (1.3.9)

lijx
′
j =

∑
i

lijx
′
j (1.3.10)

This notation was popularized by Einstein to simplify notation in developing the theory of
Relativity. Note that linear algebra and properties of matrices are very pertinent to tensors.

Definition 1 (Vector).
a′j = lijai (1.3.11)

Note that there does exist improper rotations because of left-and-right frames of reference.
A pseudo vector exists for a× b.

Kronecker Delta

δij =

{
1 i = j

0 i 6= j
(1.3.12)

This is known as the unit tensor . It has the following property

δijaj = δi1a1 + δi2a2 + δi3a3 (1.3.13)

Definition 2 (Tensor).

A′pq = lipljqAij ≡
3∑
i=1

3∑
j=1

lipljqAij (1.3.14)

12



1.3. Lecture 3: August 27, 2012 Methods of Analysis in ChNE

In papers Tensors are often capitalized and bolded, on the whiteboard they are best
double-underlined.

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (1.3.15)

A′ = LtAL (1.3.16)

A = LA′Lt (1.3.17)

In the special case of symmetric tensors, Aij = Aji. Antisymmetric tensors are defined
as Aij = −Aji.

We also notice that for the Kronecker Delta,

δ =

1 0 0
0 1 0
0 0 1

 (1.3.18)

Tensor Product of two vectors

Dyadic Product, inner product

a · b = a1b1 + a2b2 + a3b3 (1.3.19)

Cross Product

a× b =

∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ (1.3.20)

The outer product of two vectors is

a b = c (1.3.21)

cij = aibj =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 (1.3.22)

Couchy Stress

Deformation of non-isotropic solid, the stress is

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1.3.23)

=

σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

 (1.3.24)
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where the second matrix is expressed for sheer-stress.
For a falling droplet,

u =
f g

6πµRP

(1.3.25)

This gives rise to the Oseen tensor , T ,

u = T (r) · f g (1.3.26)

Tensor Algebra

1. Addition
C = A+B (1.3.27)

cij = Aij +Bij

2. Multiplication by a Scalar
C = αA (1.3.28)

cij = αAij

3. A tensor may be broken into symmetric and antisymmetric matrices,

Aij =
1

2
(Aij + Aji) +

1

2
(Aij − Aji) (1.3.29)

A =
1

2

(
A+At

)
+

1

2

(
A−At

)
4. Dot product

A · b = c ci = Aijbj (1.3.30)

b ·A = d di = Aijbi (1.3.31)

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ·
b1

b2

b3

 =

A11b1 + A12b2 + A13b3

A21b1 + A22b2 + A23b3

A31b1 + A32b2 + A33b3

 (1.3.32)

5. Rotation Tensor

Ω =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , ω =

ω1

ω2

ω3

 (1.3.33)

a× ω = Ω · a (1.3.34)

ω × a = a ·Ω (1.3.35)
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(
a1 a2 a3

)
·

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 =

Ω11a1 + Ω12a2 + Ω13a3

Ω21a1 + Ω22a2 + Ω23a3

Ω31a1 + Ω32a2 + Ω33a3

 (1.3.36)
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1.4 Lecture 4: August 29, 2012

Returning to the operation of rotation of a vector in a plane.

a× ω = Ω · a (1.4.1)

Generally, if
c = A · b ci = Aijbj (1.4.2)

c′ = b ·A cj = Aijbi (1.4.3)

c 6= c′, however for vectors,
a · b = b · a (1.4.4)

Similar to the operation known as contraction which we will now discuss.

Contraction

Tensor invariants (for Aij) ∑
Aii = A11 + A22 + A33 = Tr(A) (1.4.5)

This is the trace of the (formerly Sp(A) for “Spoor” in German) tensor. Another invariant
is the determinant (set(A))

1

2

[
(TrA)2 − Tr(AA)

]
= A11A22 + A22A33 + A11A33 − A2

12 − A2
23 − A2

13 (1.4.6)

Tensor Product

A⊗B = C (1.4.7)

Cijkm = AijBkm (1.4.8)

Double Dot:

A : B =
∑
i

∑
j

AijBji (1.4.9)

= AijBji (1.4.10)

Levi–Civita introduced the quantity, ε,

εijk =


0 if i = j, j = k, or i = k;

1 if even permutation;

−1 if odd permutation.

(1.4.11)

e.g. ε123 = ε231 = ε312 = 1 and ε132 = ε213 = ε321 = −1
This becomes useful for

(a× b)k = εijkaibj = εkijaibj (1.4.12)

If we move from different coordinate systems where the chirality of the axes are changed,
this becomes important.
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Covariant and Contravariant tensors

These are the same in Cartesian coordinates, but can be different for other curvilinear
coordinates.

dr→ dxi (i = 1, 2, 3, . . . ) (1.4.13)

dr→ dxi (i = 1, 2, 3, . . . ) (1.4.14)

Re-written as sums,

dx′i =
∑
j

∂x′i
∂xj

dxj (1.4.15)

Comparing with the law of transformation of a vector,

a′i =
∑
j

lijaj (1.4.16)

we observe some important similarity.
Now we see the contravariant vector,

a
′i =

∑ ∂x′i
∂xj

aj (1.4.17)

Now the gradient,

∇φ =
∂φ

∂x1

ê1 +
∂φ

∂x2

ê2 +
∂φ

∂x3

ê3 (1.4.18)

So for a different coordinate system the covariant is

∂φ

∂x′i
=
∑
j

∂φ

∂xj
∂xj

∂x′i
(1.4.19)

in other words,

b′i =
∑ ∂xj

∂x′i
bj (1.4.20)

In cartesian coordinates we know these are the same because,

∂xj

∂x′i
=
∂x
′i

∂xj
(1.4.21)

however we may now do curvilinear coordinates.
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UNIT 2

Chapter 8—Curvilinear Coordinates

Useful books on this topic:

• Moon & Spencer, Field Theory Handbook, John Zubal (2003)

• Korn & Korn, Mathematical Handbook, McGraw–Hill (1968) or Dover (2000)

• Aris, Vectors, Tensors, and Basic Equations of Fluid Mechanics, Dover (1990)

• Morse & Feschback, Methods of Theoretical Physics, Feschback Publishing (1998)

2.1 Lecture 4 (cont.)

Overview

Polar 2D

Polar coordinates are defined by,

x = r cos(θ), (2.1.1)

y = r sin(θ). (2.1.2)

Observe that
r2 = x2 + y2, (2.1.3)

and
y

x
= tan(θ). (2.1.4)

For the velocity, we will transform the coordinates,

v(t) =
dr

dt
=

dx

dt
ı̂ +

dy

dt
̂ (2.1.5)

dr

dt
=

dr

dt
êr + r

dêr
dr

(2.1.6)
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x

y

θ

r
r

Figure 2.1. Polar Coordinates

r = rêr (2.1.7)

êr = cos(θ)̂ı + sin(θ)̂ (2.1.8)

Returning to the unit vector in r,

dêr
dr

=
∂êr
∂θ

dθ

dr
= êθ (2.1.9)

∂êr
∂θ

= − sin(θ)̂ı + cos(θ)̂ (2.1.10)

dêr
dt

=
∂êr
∂θ

dθ

dt
= êθ

dθ

dt
(2.1.11)

For the component velocities,

vr =
dr

dt
(2.1.12)

vθ = r
dθ

dt
(2.1.13)

v = vrêr + vθêθ (2.1.14)

The acceleration,

a =
d2r

dt2
(2.1.15)

=
d2r

dt2
êr +

dr

dt

dêr
dt

+
dr

dt

dθ

dt
êθ + r

d2θ

dt2
êθ + r

dθ

dt

dêθ
dt

(2.1.16)
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dêθ
dθ

=
d

dθ
(− sin(θ)̂ı + cos θ̂) (2.1.17)

= − cos(θ)̂ı− sin(θ)̂ (2.1.18)

= − (cos(θ)̂ı + sin(θ)̂) (2.1.19)

= −êr (2.1.20)

Metric Coefficients

∂r

∂xi
= êi (2.1.21)

∂r

∂r
= hrêr (2.1.22)

∂r

∂θ
= hθêθ (2.1.23)

hr =

∣∣∣∣∂r

∂r

∣∣∣∣ (2.1.24)

hθ =

∣∣∣∣∂r

∂θ

∣∣∣∣ (2.1.25)

hr =

[(
∂x

∂r

)2

+

(
∂y

∂r

)2
]1/2

(2.1.26)

=

[(
∂r cos θ

∂r

)2

+

(
∂r sin θ

∂r

)2
]1/2

=
[
cos2(θ) + sin2(θ)

]
= 1 (2.1.27)

hθ =

[(
∂x

∂θ

)2

+

(
∂y

∂θ

)2
]1/2

(2.1.28)

=
[
r2 sin2(θ) + r2 cos2(θ)

]1/2
(2.1.29)

= r (2.1.30)

So the differential becomes,

dr =
∂r

∂r
dr +

∂r

∂θ
dθ (2.1.31)

= hr dr êr + hθ dθ êθ (2.1.32)

= dr êr + r dθ êθ (2.1.33)
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2.2 Lecture 5: September 5, 2012

Metric coefficients, cont.

Returning to polar coordinates

dr(t)

dt
=

dr

dt
êr + r

dêr
dt

(2.2.1)

dêr
dt

=
∂êr
∂θ

dθ

dt
(2.2.2)

x

y

êx or ı̂

êy or ̂

Figure 2.2. Natural unit vectors in Cartesian coordinates

∂êy
∂y

= 0 (2.2.3)

êr = cos(θ)̂ı + sin(θ)̂ (2.2.4)

êθ = − sin(θ)̂ı + cos(θ)̂ (2.2.5)

∂êr
∂θ

= − sin(θ)̂ı + cos(θ)̂ = êθ (2.2.6)

This gives that,
êr · êθ = 0 (2.2.7)

Note that, ı̂ · ı̂ = 1, ̂ · ̂ = 1, and ı̂ · ̂ = 0
Now,

b = brêr + bθêθ (2.2.8)

V = (vr, vθ) (2.2.9)

vr =
dr

dt
êr (2.2.10)
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x

y

θ

r

ı̂

̂
êr

êθ

Figure 2.3. Polar coordinates with unit vectors

vθ = r
dθ

dt
êθ (2.2.11)

v = vrêr + vθêθ (2.2.12)

Acceleration,

a =
d2r

dt2
(2.2.13)

=
dv

dt
(2.2.14)

=
d2r

dt2
êr +

dr

dt

dêr
dt

+
dr

dt

dθ

dt
êθ + r

d2θ

dt2
êθ + r

dθ

dt

dêθ
dt

(2.2.15)

dêθ
dt

=
dθ

dt

dêθ
dt

(2.2.16)

deθ
dθ

=
d

dθ
(− sin(θ)̂ı + cos(θ)̂) = − cos(θ)̂ı− sin(θ)̂ = − (cos(θ)̂ı + sin(θ)̂) = −êr (2.2.17)

r(t) =

[
d2r

dt2
− r

(
dθ

dt

)2
]

êr (2.2.18)
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Metric coefficients—Generalization

Cartesian, ∂r
∂xi

= êi

x

y

z

r

z

θ

r

Figure 2.4. Cylindrical Coordinates

x

y

θ

r
r

Figure 2.5. Polar Coordinates

r = r cos(θ)̂ı + r sin(θ)̂ (2.2.19)
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dr

dr
= cos(θ)̂ı + sin(θ)̂ = êr (2.2.20)

dr

dθ
= −r sin(θ)̂ı + r cos(θ)̂ = rêθ (2.2.21)

In cartesian coordinates, the velocity is,

v = x ı̂ + y ̂ (2.2.22)

dr

dx
= ı̂,

dr

dy
= ̂ (2.2.23)

For the Cartesian case the metric coefficients are always 1.
In Polar Coordinates,

hrêr =
∂r

∂r
, hθ =

∂r

∂θ
(2.2.24)

hr =

[(
∂x

∂r

)2

+

(
∂y

∂r

)2
]1/2

(2.2.25)

=

[(
∂r cos(θ)

∂r

)2

+

(
∂r sin(θ)

∂r

)2
]1/2

=
[
cos2 θ + sin2 θ

]1/2
= 1 (2.2.26)

hθ =

[(
∂x

∂θ

)2

+

(
∂y

∂θ

)2
]1/2

(2.2.27)

=

[(
∂r cos(θ)

∂θ

)2

+

(
∂r sin(θ)

∂θ

)2
]1/2

=
[
r2 sin2 θ + r2 cos2 θ

]1/2
= r (2.2.28)

Thus, in polar coordinates, hr = 1 and hθ = r.

ds2 = dr · dr (2.2.29)

dr = hr dr êr + hθ dθ êθ (2.2.30)

ds2 = h2
r dr2 + h2

θ dθ2 (2.2.31)
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h2
r =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

(2.2.32)

Operators,

∇2, ∇, ∇·, ∇×

For f(r),

df =∇f · dr = Gradient f · dr (2.2.33)

The gradient is

∇f = (∇f)r êr + (∇f)θ êθ (2.2.34)

df = [(∇f)r êr + (∇f)θ êθ] · [êr dr + r dθ êθ] (2.2.35)

Noticing, r · r = 1 êr · êθ = 0.

df = (∇f)r dr + (∇f)θ dθ (2.2.36)

=
∂f

∂r
dr +

∂f

∂θ
dθ (2.2.37)

because (∇f)r = ∂f
∂r

, and r (∇f)θ = ∂f
∂θ

,

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ (2.2.38)

In general we see,

∇ =
ê1

h1

∂

∂x1

+
ê2

h2

∂

∂x2

+ · · · (2.2.39)

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂y
(2.2.40)

∇A = ı̂
∂Ax
∂x

+ ̂
∂Ay
∂y

+ k̂
∂Az
∂y

(2.2.41)

For the Divergence, ∇ · u,

u = urêr + uθêθ (2.2.42)

∇ · u =

(
∂

∂r
êr +

êθ
r

∂

∂θ

)
· (urêr + uθêθ) (2.2.43)

= êrêr
∂ur
∂r

+ êrur
∂êr
∂r

+ êruθ
∂êθ
∂r

+ êr · êθ
∂uθ
∂r

+
êθ · êr
r

∂ur
∂θ

+
êθ
r
ur
∂êr
∂θ

+
ê · êθ
r

∂vθ
∂θ

+
êθ
r
uθ
∂êθ
∂θ
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Recall, ∂êr
∂θ

= êθ and ∂êθ
∂r

= −êr

∇ · u =
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ
− uθ

r
(2.2.44)

∇ · u =
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

(2.2.45)

∇f =
∂f

∂r
êr +

êθ
r

∂f

∂θ
(2.2.46)

or

∇ =
∂

∂r
êr +

êθ
r

∂

∂θ
(2.2.47)

The Laplacian is,

∇2 =∇ ·∇ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(2.2.48)

and we know that there is no curl operator in only two dimensions.

Cylindrical coordinates

x = r cos(θ), y = r sin(θ), z = z (2.2.49)

This gives,

x

y

z

r

z

θ

r

Figure 2.6. Cylindrical Coordinates

r2 = x2 + y2, (2.2.50a)

θ = arctan
(y
x

)
, (2.2.50b)

z = z (2.2.50c)
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Unit Vectors

êr =
∂r/∂r

|∂r/∂r|
(2.2.51)

êθ =
∂r/∂θ

|∂r/∂θ|
(2.2.52)

êz =
∂r/∂z

|∂r/∂z|
(2.2.53)

R2 = x2 + y2 + z2. (2.2.54)

∇ =
êr
hr

∂

∂r
+

êθ
hθ

∂

∂θ
+

êz
hz

∂

∂z
(2.2.55)

hr =

[(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2
]1/2

= 1 (2.2.56)

hθ =

[(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2
]1/2

= r (2.2.57)

hz =

[(
∂x

∂z

)2

+

(
∂y

∂z

)2

+

(
∂z

∂z

)2
]1/2

= 1 (2.2.58)

∇ =
∂

∂r
êr +

êθ
r

∂

∂θ
+ êz

∂

∂z
(2.2.59)

êi × êi = 0 (2.2.60)

∇× a =

∣∣∣∣∣∣
êr êθ êz
∂
∂r

1
r
∂
∂θ

∂
∂z

ar aθ az

∣∣∣∣∣∣ (2.2.61)

General Approach to Orthogonal Curvilinear Coordinates

x = x (u1, u2, u3) (2.2.62a)

y = y (u1, u2, u3) (2.2.62b)

z = z (u1, u2, u3) (2.2.62c)

An arbitrary position in space can be written by.

r = x (u1, u2, u3) ı̂ + y (u1, u2, u3) ̂ + z (u1, u2, u3) k̂ (2.2.63)

A general differential volume element is defined by;

dV = dx dy dz
(
ı̂ ·
(
̂× k̂

))
(2.2.64)
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Unit Vectors

êi =
∂r/∂ui
|∂r/∂ui|

(2.2.65)

=
1

hi

∂r

∂ui
(2.2.66)

hi =

[(
∂x

∂ui

)2

+

(
∂y

∂ui

)2

+

(
∂z

∂ui

)2
]1/2

(2.2.67)

dx dy dz = |J | du1 du2 du3 (2.2.68)
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2.3 Lecture 6: September 10, 2012

Review of Metric Coefficients

Previously we introduced the metric coefficients. Their number is dependent on the dimen-
sions of space and their value is dependent on the geometry of the coordinate system. We
define a three-dimensional metric coefficient,

hi =

[(
∂x

∂ri

)2

+

(
∂y

∂ri

)2

+

(
∂z

∂ri

)2
]1/2

. (2.3.1)

The differential distance is

dr = h1 du1 + h2 du2 + h3 du3 , (2.3.2)

where ui are the variables of the new coordinate system.

Generalized Differential Operators

The common differential operators may now be expressed in terms of the general coordinate
variables. The gradient,

∇ =
1

h1

∂

∂u1

ê1 +
1

h2

∂

∂u2

ê2 +
1

h3

∂

∂u3

ê3. (2.3.3a)

The divergence,

∇ · v =
1

h1h2h3

[
∂

∂u1

(h2h3v1) +
∂

∂u2

(h1h3v2) +
∂

∂u3

(h1h2v3)

]
. (2.3.3b)

Finally, the Laplace operator,

∇2f =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂f

∂u1

)
+

∂

∂h2

(
h1h3

h2

∂f

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂f

∂u3

)]
. (2.3.3c)

The steps required in problems involving change of coordinates are

• Select coordinate system,

• Define the necessary differential operators

• Write the new differential equation

• Solve the equation

• (Revert to original coordinates)

Some examples of unusual, but helpful, coordinate systems include the biconical and the
bipolar coordinate systems. More common coordinate systems are Cartesian, cylindrical,
and spherical geometries. The definition of spherical coordinates,

z = r cos θ, (2.3.4a)

x = r sin θ cosφ, (2.3.4b)

y = r sin θ sinφ. (2.3.4c)
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Figure 2.7. Biconical Coordinates

Figure 2.8. Bi-polar Coordinates

Four Dimensional Spherical Coordinates

To understand the stability of orbitals in n-dimensional spaces, we will discuss the four-
dimensional spherical coordinate system. We will develop the metric coefficients from the
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x

y

z

r

φ

θ
r

Figure 2.9. Spherical Coordinates

definition of the coordinate variables:

x1 = r cos θ, (2.3.5a)

x2 = r sin θ cosφ, (2.3.5b)

x3 = r sin θ sinφ cosψ, (2.3.5c)

x4 = r sin θ sinφ sinψ. (2.3.5d)

Metric Coefficients

Let’s find the metric coefficients of our four-dimensional system; h1, h2, h3, h4 or hr, hθ, hφ, hψ.
In the radial direction,

hr =

[(
∂x1

∂r

)2

+

(
∂x2

∂r

)2

+

(
∂x3

∂r

)2

+

(
∂x4

∂r

)2
]1/2

, (2.3.6a)

=
[
cos2 θ + sin2 θ cos2 φ+ sin2 θ sin2 φ cos2 ψ + sin2 θ sin2 φ sin2 ψ

]1/2
,

= 1 . (2.3.6b)

In the altitudal angular direction,

hθ =

[(
∂x1

∂θ

)2

+

(
∂x2

∂θ

)2

+

(
∂x3

∂θ

)2

+

(
∂x4

∂θ

)2
]1/2

, (2.3.7a)

=
[
r2 sin2 θ + r2 cos2 θ cos2 φ+ r2 cos2 θ sin2 φ cos2 ψ + r2 cos2 θ sin2 φ sin2 ψ

]1/2
,

= r
[
sin2 θ + cos2 θ cos2 φ+ cos2 θ sin2 φ cos2 ψ + cos2 θ sin2 φ sin2 ψ

]1/2
,

= r . (2.3.7b)
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In the azimuthal angular direction,

hφ =

[(
∂x1

∂φ

)2

+

(
∂x2

∂φ

)2

+

(
∂x3

∂φ

)2

+

(
∂x4

∂φ

)2
]1/2

, (2.3.8a)

=
[
0 + r2 sin2 θ sin2 φ+ r2 sin2 θ cos2 φ cos2 ψ + r2 sin2 θ cos2 φ sin2 ψ

]1/2
,

= r
[
sin2 θ sin2 φ+ sin2 θ cos2 φ cos2 ψ + sin2 θ cos2 φ sin2 ψ

]1/2
,

= r sin θ . (2.3.8b)

In the second azimuthal angular direction,

hψ =

[(
∂x1

∂ψ

)2

+

(
∂x2

∂ψ

)2

+

(
∂x3

∂ψ

)2

+

(
∂x4

∂ψ

)2
]1/2

, (2.3.9a)

=
[
0 + 0 + r2 sin2 θ sin2 φ sin2 ψ + r2 sin2 θ sin2 φ cos2 ψ

]1/2
,

= r
[
sin2 θ sin2 φ sin2 ψ + sin2 θ sin2 φ cos2 ψ

]1/2
,

= r sin θ sinφ . (2.3.9b)

Thus, we have found all the metric coefficients for a 4D spherical coordinate system.
Moving on to other useful operators, the total differential is,

ds = hr dr êr + hθ dθ êθ + hφ dφ êφ + hψ dψ êψ, (2.3.10)

where

êr =
1

hr

(
∂s

∂r

)
=
∂s

∂r
, (2.3.11a)

êθ =
1

hθ

(
∂s

∂θ

)
=

1

r

∂s

∂θ
, (2.3.11b)

êφ =
1

hφ

(
∂s

∂φ

)
=

1

r sin θ

∂s

∂φ
, (2.3.11c)

êψ =
1

hψ

(
∂s

∂ψ

)
=

1

r sin θ sinφ

∂s

∂ψ
. (2.3.11d)

Substituting the values of the metric coefficients, the differential length of a line is,

ds = dr êr + r dθ êθ + r sin θ dφ êφ + r sin θ sinφ dψ êψ. (2.3.12)

The total line length is

s = r cos θ ı̂ + r sin θ cosφ ̂ + r sin θ sinφ cosψ k̂ + r sin θ sinφ sinψ l̂. (2.3.13)

We may also sketch out all the differentials of the different unit vectors as shown in
the table. Note that some of the expressions are rearranged and that two of the items are
expressions of two unit vectors (these have been split using the dot product, note êi · êi = 1
while êi · êj = 0).
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Table 2.1. Four dimensional spherical coordinates: vector and variable relations

∂êj
∂xi

êj : êr êθ êφ êψ

i : r dêr
dr

= 0 dêθ
dr

= 0
dêφ
dr

= 0
dêφ
dr

= 0

θ dêr
dθ

= êθ
dêθ
dθ

= −êr
dêφ
dθ

= 0
dêψ
dθ

= 0

φ dêr
dφ

= êφ sin θ dêθ
dφ

= êφ cos θ
dêφ
dφ
· êr = − sin θ

dêψ
dφ

= 0

or: 1
sin θ

dêr
dφ

= êφ or: 1
cos θ

dêθ
dφ

= êφ
dêφ
dφ
· êθ = cos θ

ψ dêr
dψ

= êψ sin θ sinφ dêθ
dψ

= êψ cos θ sinφ
dêφ
dψ

= êψ cosφ
dêψ
dψ
· êr = − sin θ sinφ

or: 1
sin θ sinφ

dêr
dψ

= êψ or: 1
cos θ sinφ

dêθ
dψ

= êψ or: 1
cosφ

dêφ
dψ

= êψ
dêψ
dψ
· êφ = − cosφ

Differential Operators

We want to convert the operators from the 4D cartesian space into the 4D spherical space,
or

f(x1, x2, x3, x4)→ f(r, θ, φ, ψ). (2.3.14)

We begin with the gradient operator;

∇f =
1

hr

∂f

∂r
êr +

1

hθ

∂f

∂θ
êθ +

1

hφ

∂f

∂φ
êφ +

1

hψ

∂f

∂ψ
êψ, (2.3.15)

=
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ +

1

r sin θ sinφ

∂f

∂ψ
êψ. (2.3.16)

Thus, the essential gradient is

∇ =
∂

∂r
+

1

r

∂

∂θ
+

1

r sin θ

∂

∂φ
+

1

r sin θ sinφ

∂

∂ψ
(2.3.17)

We may define a general vector function A,

A(r, θ, φ, ψ) = Arêr + Aθêθ + Aφêφ + Aψêψ. (2.3.18)

The divergence operator on A becomes,

∇ ·A =
1

hrhθhφhψ

[
∂

∂r
(hθhφhψAr) +

∂

∂θ
(hrhφhψAθ) +

∂

∂φ
(hrhθhψAφ) +

∂

∂ψ
(hrhθhφAψ)

]
=

1

r3 sin2 θ sinφ

[
∂

∂r

(
r3 sin2 θ sinφAr

)
+

∂

∂θ

(
r2 sin2 θ sinφAθ

)
+
∂

∂φ

(
r2 sin θ sinφAφ

)
+

∂

∂ψ

(
r2 sin θAψ

)]
=

1

r3

∂r3Ar
∂r

+
1

r sin2 θ

∂

∂θ

(
sin2 θAθ

)
+

1

r sin θ sinφ

∂

∂φ
(sinφAφ) +

1

r sin θ sinφ

∂Aψ
∂ψ
(2.3.19)
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The Laplacian operator

∇2f =∇ ·∇f, (2.3.20a)

=
1

hrhθhφhψ

[
∂

∂r

(
hθhφhψ
hr

∂f

∂r

)
+

∂

∂θ

(
hrhφhψ
hθ

∂f

∂θ

)
+

∂

∂φ

(
hrhθhψ
hφ

∂f

∂φ

)
+

∂

∂ψ

(
hrhθhφ
hψ

∂f

∂ψ

)]
,

(2.3.20b)

=
1

r3 sin2 θ sinφ

[
∂

∂r

(
r3 sin2 θ sinφ

∂f

∂r

)
+

∂

∂θ

(
r sin2 θ sinφ

∂f

∂θ

)
+

∂

∂φ

(
r sinφ

∂f

∂φ

)
+

∂

∂ψ

(
r

sinφ

∂f

∂ψ

)]
,

(2.3.20c)

=
1

r3

∂

∂r

(
r3∂f

∂r

)
+

1

r2 sin2 θ

∂

∂θ

(
sin2 θ

∂f

∂θ

)
+

1

r2 sin2 θ sinφ

∂

∂φ

(
sinφ

∂f

∂φ

)
+

1

r2 sin2 θ sin2 φ

∂2f

∂ψ2
.

(2.3.20d)

Orbitals in a General Dimensional Space

From the laplacian expression, the potential in the radial direction in 4D is

∇rf =
1

r3

∂

∂r

(
r3∂f

∂r

)
. (2.3.21)

In 3D
1

r2

∂

∂r

(
r2∂f

∂r

)
= 0, (2.3.22)

which gives a solution of f ∼ 1
r
. In 2D

1

r

∂

∂r

(
r
∂f

∂r

)
= 0. (2.3.23)

In 1D
1

r0

∂

∂r

(
r0∂f

∂r

)
= 0. (2.3.24)

There are no 4D orbits. However, orbits are mathematically possible in 3D and 2D.

Volume of 4D sphere

The differential hyper-surface of a 4D sphere at r = R,

dV3 = R3 sin2 θ sinφ dθ dφ dψ . (2.3.25)

The differential volume in 4D is

dV4 = r3 sin2 θ sinφ dr dθ dφ dψ . (2.3.26)
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We note that the solid angle in 4D is sin2 θ sinφ dθ dφ dψ. If we now integrate over the solid
angle, we get something different from 4π as in 3D;

ˆ π

0

sin2 θ dθ

ˆ π

0

sinφ dφ

ˆ 2π

0

dψ =
π

2

ˆ π

0

sinφ dφ

ˆ 2π

0

dψ , (2.3.27a)

= π

ˆ 2π

0

dψ , (2.3.27b)

= 2π2. (2.3.27c)

Finally, considering the elementary integral,
´ R

0
r3 dr = 1

4
r4, the total volume of a hyper-

sphere is

V4 =
π2R4

2
. (2.3.28)
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UNIT 3

Chapter 11—Differential Equations

3.1 Lecture 7: September 12, 2012

Suggested reading: pgs. 516–524.

1. ODE and PDE

2. Order 1st, 2nd, . . . , nth

3. Linear and Nonlinear. e.g. y dny
dxn

4. Homogeneous and Nonhomogeneous

5. Degree—Power of the highest order derivative, e.g. dny
dxn

(
dny
dxn

)2

6. Constant Coefficients and Variable Coefficients

Linear First Order ODEs

The general form of a (non-homogeneous, variable coefficient) linear first order ordinary
differential equation.

dy

dx
+ P (x)y = q(x) (3.1.1)

Normally we keep an equation in the following form,

A(x)
dy

dx
+B(x)y = C(x) (3.1.2)

because we may divide by A(x), so that we get the previous equation where P (x) =
B(x)/A(x) and q(x) = C(x)/A(x).
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Integrating Factors

dy + [P (x)y + q(x)] dx = 0 × µ(x) (3.1.3)

µ(x) dy + [µ(x)P (x)y + µ(x)q(x)] dx = 0 (3.1.4)

because we have a total differential,

∂2F

∂x∂y
=

∂2F

∂y∂x
(3.1.5)

dF =
∂F

∂x
dx+

∂F

∂y
dy = 0 (3.1.6)

∂µ

∂x
=

∂

∂y
(µp(x)y − µxq(x)) = µp(x) (3.1.7)

∂µ(x)q(x)

∂y
≡ 0 (3.1.8)

∂µ

∂x
= µ(x)p(x) (3.1.9)

µ(x) = e
´
p(x)dx = Integrating Factor (3.1.10)

dy

dx
+ P (x)y = q(x) (3.1.11)

e
´
p(x)dxdy(x)

dy
+ p(x)e

´
p(x)dxy(x) = e

´
p(x)dxq(x) (3.1.12)

d

dx

(
ye
´
p(x)dx

)
= e

´
p(x)dxq(x) (3.1.13)

Now,

ye
´
p(x)dx =

ˆ
q(x)e

´
p(x)dxq(x) dx+ C (3.1.14)

y = e−
´
p(x)dx

ˆ
q(x)e

´
p(x)dxq(x) dx+ Ce−

´
p(x)dx (3.1.15)

where the second term in the solution is the solution to the homogeneous equation.
The solution of an inhomogeneous ODE is unique up to an arbitrary multiple of the

solution of the homogeneous ODE.
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Example

dy

dx
+

(
2x+ 1

x

)
y = e−2x (3.1.16)

where p(x) =
(

2x+1
x

)
and q(x) = e−2x. So,

e
´
p(x)dx = e

´
2x+1
x

dx = e2x−ln |x| = xe2x (3.1.17)

d

dx

(
xe2xy

)
= x (3.1.18)

xe2xy =
x2

2
+ C (3.1.19)

y =
1

2
xe−2x +

C

2
e−2x (3.1.20)

Bernoulli Equation

dy

dx
+ P (x)y = q(x)yn (3.1.21)

for n = 0
dy

dx
+ P (x)y = q(x) (3.1.22)

Which we have done above. If n = 1,

dy

dx
+ P (x)y = q(x)y (3.1.23)

which rearranges to a homogeneous equation. For If n = 2, 3, . . . the solution can be solved
by substituting u = y1−n, and we get,

du

dx
+ (1− n)P (x)u = (1− n)q(x) (3.1.24)

Homogeneous Linear Differential Equations with Constant Coeffi-
cients

In general (with non constant coefficients),

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y(x) = f(x) (3.1.25)

with constant coefficients, we simply have,

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y(x) = b (3.1.26)

For a linear system Ly = 0

39



Petsev and Benner Unit 3. Chapter 11—Differential Equations

• if y(x) is a solution, so is Cy(x)

• if y1(x) is some solution and y2(x) is another solution then c1y1(x) + c2y2(x).

• generally there are n linearly independent solutions to the equation, e.g. our solution
becomes y =

∑n
i=1 ciyi(x)

We know whether the solutions are linearly independent by the Wronski Determinant,
or simply wronskian. For fi(x), i = 1, 2, . . . , n,

n∑
i=1

ciyi(x) = 0 (3.1.27)

our linear system is expressed,
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

...
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n



c1

c2
...
cn

 = 0 (3.1.28)

d[w] = 0 (3.1.29)

2nd Order Differential Equation

a2
d2y

dx2
+ a1

dy

dx
+ a0y(x) = 0 (3.1.30)

Form y = eαx and substitute

a2α
2eαx + a1αeαx + a0eαx = 0 (3.1.31)

a2α
2 + a1α + a0 = 0 (3.1.32)

α1 = −

(
a1 + (a2

1 − 4aoa2)
1/2

2a2

)
(3.1.33)

α2 =
a1 − (a2

1 − 4aoa2)
1/2

2a2

(3.1.34)

y = C1eα1x + C2eα2x (3.1.35)

Non-homogeneous ODEs

For a linear, nonhomogeneous system,

Ly = f(x)
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Overview

1. Method of undetermined coefficients The solution is then,

y = yc + yp (3.1.36)

This requires guessing the solution form of the particular solution of the right hand side. See
textbook for further details.

2. Method of Variation of Parameters

3. Integral Transforms Works best for constant coefficients

4. Eigenfunction expansions

5. Green Functions Good for variable coefficients. The Green functions are well tabu-
lated.

Method of Undetermined Coefficients

First, Solve Ly = 0 to get the homogeneous solution

yc = C1y1 + C2y2 + · · ·+ Cnyn (3.1.37)

which is also known as the complimentary solution. Then find the particular solution,

yp → particular solution. (3.1.38)

Method of Variation of Parameters

The method of variation of parameters works with variable coefficients, so for a general form
second-order ODE, we have,

a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = f(x). (3.1.39)

It also has no limitations on the form of f(x). A minus with the method is that it requires
one known particular solution.

y(x) = C1y1(x) + C2y2(x). (3.1.40)

y(x) = u1(x)y1(x) + u2(x)y2(x). (3.1.41)
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3.2 Lecture 8: September 17, 2012

Method of Variation of Parameters

1. Works for non-homogeneous equations

2. Variable Coefficients

y′′(x) + P (x)y′(x) +Q(x)y = f(x) (3.2.1)

For homogeneous systems f(x) = 0 and the solution is of the form of,

y = C1y1(x) + C2y2(x) (3.2.2)

The Wronskian determinant,

W =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ (3.2.3)

W = y1y
′
2 − y′1y2 (3.2.4)

W ′ =
d

dx
(y1y

′
2 − y′1y2)

= y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y′2

= y1y
′′
2 − y′′1y2 (3.2.5)

with
y′′(x) = −P (x)y′(x)−Q(x)y (3.2.6)

we get that the Wronskian derivative is,

W ′ = y1 [−P (x)y′2(x)−Q(x)y2]− y2 [−P (x)y′1(x)−Q(x)y1] (3.2.7)

= −P (x)y′2(x)y1 + P (x)y′1(x)y2

= −P (x) (y′2(x)y1 − y′1(x)y2)

= −P (x)W (3.2.8)

This first order equation is therefore solved by,

W = W0e−
´
P (x)dx. (3.2.9)

y1y
′
2 − y′1y2

y2
1

=
W

y2
1

=
1

y2
1

(3.2.10)

for P (x) = 0. Also, (
y2

y1

)′
=
W

y2
1

=
1

y2
1

. (3.2.11)
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Therefore we find the second solution

y2 = y1(x)

ˆ
W

y2
1(x)

dx (3.2.12)

The solution of a homogeneous system is simply

y = C1y1(x) + C2y2(x) (3.2.13)

However for a non homogeneous system, we need

y = u1(x)y1(x) + u2(x)y2(x) (3.2.14)

Plugging this into the general equation, y′′(x) + P (x)y′(x) +Q(x)y = f(x), we get

u1 (y′′1 + Py′1 +Qy1)+u2 (y′′2 + Py′2 +Qy2)+(u′1y
′
1 + u′2y

′
2)+(u′1y1 + u′2y2)+P (u′1y1 + u′2y2) = f(x)

(3.2.15)
The first two terms are solutions to the homogeneous equations, so they are simply zero.

(u′1y
′
1 + u′2y

′
2) + (u′1y1 + u′2y2) + P (u′1y1 + u′2y2) = f(x) (3.2.16)

We must obtain u1 and u2. This gives rise to two requirements,

1. u1y1 + u2y2 is a solution

2. u′1y1 + u′2y2 = 0

This gives system along with,

u′1y
′
1 + u′2y

′
2 = f(x) (3.2.17)

u′1y1 + u′2y2 = 0 (3.2.18)

We know then,

u′1 =
−y2f(x)

W
(3.2.19)

u1 = −
ˆ
−y2f(x)

W
dx+ C1 (3.2.20)

u′2 =
y1f(x)

W
(3.2.21)

u2 =

ˆ
−y1f(x)

W
dx+ C2 (3.2.22)

Where the C’s are found from the boundary conditions
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To Solve—In Review

1. Determine particular solution

2. Find |W | where, W = e
´
P (x)dx, note that if P (x) = 0, W = 1

3. Find the second solution y2 = y1

´
W
y21

dx

4. Write the solution in the form u = u1(x)y1(x) + u2(x)y2(x)

5. Find u1 and u2.

u1 = −
ˆ
−y2f(x)

W
dx+ C1

u2 =

ˆ
−y1f(x)

W
dx+ C2

6. Find C1 and C2 from the boundary conditions corresponding to the problem.

Example: Capillary electrostatics

Electrostatic problem within a small capillary .

d2y

dx2
− cosh(Ψ0)y =

dΨ0

dx
(3.2.23)

where

Ψ0 = 2 ln

[
1 + te−x

1− te−x

]
. (3.2.24)

As general background,

∇2Ψ = κ2 sinh(Ψ) (3.2.25)

In cylindrical coordinates,
d2Ψ

dr2
+

1

r

dΨ

dr
= κ2 sinh(Ψ)

In Cartesian coordinates,
d2Ψ

dx2
= κ2 sinh(Ψ)

We know that there is a particular solution,

y1 =
4tex

t2 − e2x
= f(x) (3.2.26)

so we may use the Wronskian to find the second solution.

y1y
′
2 − y′1y2 = 1 = W (3.2.27)

44



3.2. Lecture 8: September 17, 2012 Methods of Analysis in ChNE

y2 =
4tex

t2 − e2x

ˆ (
t2 − e2x

4tex

)2

dx (3.2.28)

=
e3x − e−xt4 − 4ext2x

8 (t3 − e2xt)
(3.2.29)

This gives our solution to the homogeneous equation.
For the other solutions C1y1 + C2y2, we set

u1(x)y1(x) + u2(x)y2(x) (3.2.30)

u1 = −
ˆ
−y2f(x)

W
dx+ C1 (3.2.31)

=
1

2

(
x+

2t2x

e2x − t2

)
+ C1 (3.2.32)

u2 =

ˆ
−y1f(x)

W
dx+ C2 (3.2.33)

=

ˆ (
dΨ0

dx

)2

dx+ C1 (3.2.34)

=
8t2

e2x − t2
+ C2 (3.2.35)

Now we can use the boundary conditions, where y(x=0) = 0 and y(x→∞) = 0 or we get
two equations for the two unknowns, C1 and C2.

u1(0)y1(0) + u2(0)y2(0) = 0 (3.2.36)

u1(∞)y1(∞) + u2(∞)y2(∞) = 0 (3.2.37)

Method of Green’s Functions

Example: electrostatic problems

Laplace equation works within a vacuum,

∇2Ψ = 0 (3.2.38)

For charged systems we need the Poisson equation, which includes the charge density as
a continuous function (εr ∼ 80 for water).

∇2Ψ = − ρ

ε0

(3.2.39)

Ψ =
1

4πε0

∑
i

qi
ri

(3.2.40)
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The force is given by,

F =
q1q2

4πε0r2
n (3.2.41)

We may now approximate the sum by an integral to give the continuum approximation.

Ψ(r1) =
1

4πε0

ˆ
ρ(r2)

|r1 − r2|
dV (3.2.42)

Where dV2 = dr2. Now, ρ(r)→ δ(r)→ for a single point charge.
The physical equation of true distribution is

∇2Ψ = − ρ

ε0

(3.2.43)

but,
∇2G = − δ(r1 − r2) (3.2.44)

where G is the Green’s function.
Green’s Theorem,

ˆ (
Ψ∇2G−G∇2Ψ

)
dV2 =

ˆ
(Ψ∇G−G∇Ψ) · dS (3.2.45)

The right hand side is simply 0 for surrounding boundaries/surfaces that are very far from
r2 and the integrand that drops of proportionally to 1/r2 or faster. This simplifies us to,

ˆ
Ψ∇2G dV1 =

ˆ
G∇2Ψ dV2

ˆ
Ψ(r2) δ(r1 − r2) =

ˆ
G(r1, r2)ρ(r2) dV2

This gives,

Ψ(r) =

ˆ
G(r1, r2)ρ(r2) dV2 (3.2.46)
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3.3 Lecture 9: September 19, 2012

Resources for Greens functions,

• Polyanin, Handbook of Linear Partial Differential Equations, Chapman-Hall (2001)

• Korn and Korn, Mathematical Handbook, Dover (2000)

Greens Functions, cont.

x

y

z

r1

r2

Figure 3.1. Variation of interaction of two particles in three dimensions

Ψ(r1) =
1

ε0

ˆ
G(r1, r2)ρ(r2) dV2 (3.3.1)

where, dV2 = dr2, ˆ
∇2

(
1

r

)
dV =

ˆ
∇
( n

r2

)
dV =

{
−4π

0
(3.3.2)

with ∇2
(

1
r

)
=∇

(
n
r2

)
.

1

4π

ˆ
∇2

(
1

r

)
dV = −

ˆ
δ(r) dV (3.3.3)

∇2

(
1

r

)
= −4π δ(r) (3.3.4)

In this case now the Greens function is simply 1
4πr

.
For,

∇2Ψ = − ρ

ε0

(3.3.5)
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gives a Greens function of

G(r1, r2) =
−1

4π|r1 − r2|
(3.3.6)

Ly(r1) = −f(r1) (3.3.7)

LG(r1, r2) = − δ(r1 − r2) (3.3.8)

y(r1) =

ˆ
G(r1, r2)f(r1) dr2 (3.3.9)

ˆ
∇2G dV2 =

ˆ
∇G · ds2 = −1 (3.3.10)

in two dimensions ∇2 = ∂2

∂x2
+ ∂2

∂y2

x

y

ρ1
ρ2

Figure 3.2. Two dimensional case

∂G(ρ1,ρ2)

∂ρ12

=
−1

2π

1

|ρ1 − ρ2|
(3.3.11)

In 3D
∂G(r1, r2)

∂r12

=
−1

4π

1

|r1 − r2|2
(3.3.12)

For the solutions, 3D ∼ 1
r

and 2D ∼ ln(ρ). In 2D,

G(ρ1,ρ2) =
−1

2π
ln(ρ12) (3.3.13)

∇2F = −f(ρ) (3.3.14)

F (ρ1) =
1

2π

ˆ
ln |ρ1 − ρ2|f(ρ2) dρ2 (3.3.15)

in 1D there is no green function for the laplacian, d2F
dx2

= −f(x).
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r

y

1

ln(r)

Figure 3.3. Behavior of 3D solution nearing the singularity at zero

Example: Schrodinger’s Equation and Quantum Mechanics

One of the most important equations of all time and a foundational one to quantum me-
chanics is the Schrodinger equation,

− ~
2m
∇2Ψ (r) + k2Ψ (r) = −f (r) (3.3.16)

The simplified form is known as the Helmholtz equation. Note

k2 =
2mE

~2
(3.3.17)

f (r) = −2m

~2
V (r)Ψ(r) (3.3.18)

The Born approximation,

Ψ (r1) = −
ˆ

2m

~2
V (r2) Ψ (r2)G(r1, r2) dV2 (3.3.19)

Ψ ∼ eik0r (3.3.20)

From the literature, we know that the the Greens function of,

∇2G+ k2G = − δ(r1 − r2) (3.3.21)

is

G(r1, r2) =
eik·|r1−r2|

4π|r1 − r2|
. (3.3.22)

Substituting,

Ψ (r1) = −
ˆ

2m

~2
V (r2)

eik·|r1−r2|

4π|r1 − r2|
dV2 (3.3.23)

note that the integral equation is much more stable numerically than the differential equation.
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Brownian Motion and Stochastic Equations

Einstien’s Method 〈
x2
〉

= 2Dt (3.3.24)

〈x〉 = 0 (3.3.25)

〈
mv2

〉
= κT (3.3.26)

Langevin’s Method

Langevin accelerated the development of stochastic differential equations . From Newton we
know,

ma =
∑
i

Fi (3.3.27)

m
d2x

dt2
= −βdv

dt
+ fx (3.3.28)

t

f

f̄
f(t)

Figure 3.4. Brownian motion of a particle force over time

〈x〉 →
〈
x2
〉

(3.3.29)

1

2

d2x2

dt2
=

d

dt

(
2x

dx

dt

)
= 2x

d2x

dt2
+

(
dx

dx

)2

(3.3.30)

x
d2x

dt2
=

1

2

d2x2

dt2
−
(

dx

dx

)2

(3.3.31)

mx
d2x

dt2
= −βxdx

dt
+ fx (3.3.32)

m

2

d2x2

dt2
−m

(
dx

dx

)2

= −β
2

dx2

dt
+ fx (3.3.33)
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m

2

d2x2

dt2
−mv2 = −β

2

dx2

dt
+ fx (3.3.34)

with, 〈mv2〉 = kT ,
m

2

d2 〈x2〉
dt2

− kT = −β
2

d 〈x2〉
dt

+ fx (3.3.35)

Introducing y =
d〈x2〉

dt
, we have the first-order ODE,

dy

dt
= − β

m

(
y − 2kt

β

)
(3.3.36)

d

dt

(
y − 2kt

β

)
= − β

m

(
y − 2kt

β

)
(3.3.37)

ˆ d
(
y − 2kt

β

)
(
y − 2kt

β

) = − β
m

ˆ
dt (3.3.38)

gives the solution,

y − 2kt

β
= Ce−

β
m
t (3.3.39)

Langevin found that the timescale is τch ∼ 1 × 10−8 s, thus the exponential is mostly

t

f

f̄

τ

f(t)

Figure 3.5. Range of time over which observation is taking place

negligible.
d 〈x2〉

dt
=

2kT

β
(3.3.40)

〈
x2
〉

=
2kT

β
t (3.3.41)

〈
x2
〉

= 2Dt (3.3.42)

where D = kT
6πηR
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Evolution of the particle velocity analyzed by Ornstein and Uhlenbeck.

m
dv

dt
= −βv + f(t) (3.3.43)

dv

dt
= −γv +R(t) (3.3.44)

where γ = β/m, and R(t) = f(t)/m. Making an assumption that 〈R(t)〉 = 0, and
〈R(t1)R(t2)〉 = 2D δ(t1 − t2). One may also use

〈R1(t1)R2(t2)〉 = 2Dδij δ(t1 − t2)

v = v0e−γ(t−t0) + e−γ(t−t0)

ˆ t

t0

eγ(t′−t0)R(t′) dt′ (3.3.45)

〈v〉 = v0e−γ(t−t0) (3.3.46)

shifting our integral notation, e.g.
´
f(t) dt =

´
dt f(t)

〈v(t0)v(t)〉 = v2
0e−2γ(t−t0) + e−2γ(t−t0)

ˆ t

t0

dt′
ˆ t

t0

dt′′ e2γ(t−t0) 〈R(t′)R(t′′)〉 (3.3.47)

where 〈R(t′)R(t′′)〉 = 2D δ(t′ − t′′).
ˆ t

t0

dt′
ˆ t

t0

dt′′ e2γ(t−t0)2D δ(t′ − t′′) = 2D
ˆ t

t0

dt′ e2γ(t′−t0) (3.3.48)
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3.4 Lecture 10: September 24, 2012

Example: Langevin Equation, cont.

Returning to the Langevin Equation,

dv

dt
= −γv +R(t) (3.4.1)

R(t)→ Random term. 1. 〈R(t)〉 = 0 2. 〈R(t1)R(t1)〉 = 2D δ(t1 − t2)

v(t) = v0e−γ(t−t0) + e−γ(t−t0)

ˆ t

t0

eγ(t′−t0)R(t′) dt′ (3.4.2)

mv20
2

= kT
2
→ v2

0 = kT
m

〈v(t0)v(t)〉 =
〈
v(t)2

〉
(3.4.3)

= v2
0e−2γ(t−t0) + e2γ(t−t0)

ˆ t

t0

dt′
ˆ t

t0

dt′′ eγ(t−t0)−γt0 〈R(t′)R(t′′)〉 v0 (3.4.4)

ˆ t

t0

dt′
ˆ t

t0

dt′′ e2γ(t−t0)2D δ(t′ − t′′) = 2D
ˆ t

t0

dt′ e2γ(t′−t0) (3.4.5)

it is a rule that, ˆ
f(t′ + t′′) δ(t′′) dt′′ = f(2t′) (3.4.6)

2D
γ

e−2γ(t−t0)
(
e2γ(t−t0) − 1

)
=
D
γ

(
1− e−2γ(t−t0)

)
(3.4.7)

〈
v2
〉

= v2
0e−2γ(t−t0) +

D
γ

(
1− e−2γ(t−t0)

)
(3.4.8)

where second term is the Green’s function.
To reach equilibrium, we take t0 << t,〈

v2
〉

=
D
γ

(3.4.9)

This provides us with an understanding of D;

kT

m
=
D
γ

(3.4.10)

for velocity,

D =
kTγ

m
(3.4.11)

for configurational,

D =
kT

β
(3.4.12)
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UNIT 4

Chapter 12—Series Solutions of Differential
Equations

4.1 Lecture 10, cont.

Series solutions

Looking at a second order ODE,

a2(x)
d2y

dx2
+ a1(x)

dy

dx
+ a3(x)y(x) = 0 (4.1.1)

y(x) =
∞∑
n=0

Cnx
n (4.1.2)

which is a power series method .

Power Series

Simplification of the Helmholtz equation (y′′(x) + κ2y(x) = 0)

y′′(x) + y(x) = 0 (4.1.3)

Differentiating, our solution must be,
∞∑
n=0

n(n− 1)Cnx
n−2 +

∞∑
n=0

Cnx
n = 0 (4.1.4)

n = 0 or n = 1.
∞∑
n=2

n(n− 1)Cnx
n−2 (4.1.5)

for n = 2, we get, 2C2. With n = 3 we see 6a3x, n = 4→ 12C4x
2, n = 5→ 20C5x

3, etc. We
can replace for n→ n+ 2 in our equation.

∞∑
n=0

[(n+ 2)(n+ 1)Cn+2 + Cn]xn = 0 (4.1.6)
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This quickly shows a recursive relation where,

Cn+2 = − Cn
(n+ 2)(n+ 1)

(4.1.7)

Even terms give

c2 =
−c0

2 · 1

c4 =
−c2

4 · 3
=

c0

4 · 3 · 2 · 1
=
c0

4!

c2n =
(−1)n

(2n)!
c0, n = 0, 1, 2, . . . (4.1.8)

Odd terms give,

c3 =
−c1

3 · 2

c5 =
c1

5!

c2n+1 =
(−1)n

(2n+ 1)!
c1, n = 0, 1, 2, . . . (4.1.9)

We get our c0 and c1 from the boundary conditions. Again the even becomes,

∞∑
n−0

(−1)n

(2n)!
x2n = cos(x) (4.1.10)

the odd becomes,
∞∑
n−0

(−1)n

(2n+ 1)!
x2n+1 = sin(x) (4.1.11)

Returning now to our original equation,

y′′(x) + y(x) = 0 (4.1.12)

from Euler,

y(x) = eαx (4.1.13)

substituting the form into the equation,

α2eαx + eαx = 0 (4.1.14)

which simplifies to the characteristic equation,

α2 + 1 = 0 (4.1.15)
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and we know that α±
√
−1 = ±i.

y(x) = CAeix + CBe−ix (4.1.16)

From Euler’s Equation (Identity),

eix = cos(x) + i sin(x)e−ix = − cos(x) + i sin(x) (4.1.17)

CA [cos(x) + i sin(x)] + CB [− cos(x) + i sin(x)] = (CA + CB) cos(x) + i (CA − CB) sin(x)
(4.1.18)

Ordinary and Singular Points

A(x)
d2y

dx2
+ P (x)

dy

dx
+Q(x)y(x) = 0 (4.1.19)

d2y

dx2
+ p(x)

dy

dx
+ q(x)y(x) = 0 (4.1.20)

From a Theorem, we know that x0 is oral.
to deal with a singularity,

y(x) = C1

∞∑
n=0

an(x− x0)n + C2

∞∑
n=0

bn(x− x0)n (4.1.21)

as an example:
(1− x2)y′′(x)− 6xy′ − 4xy = 0 (4.1.22)

So our p(x) = − 6x
1−x3 , and q(x) = −4

1−x2

p(x) = 6
∞∑
n=0

x2n+1 (4.1.23)

q(x) = −4
∞∑
n=0

x2n (4.1.24)

for stability we see, x� |1|

y(x) = C1

∞∑
n=0

anx
n + C2

∞∑
n=0

bnx
n (4.1.25)

y(x) = C1

∞∑
n=0

(n+ 1)x2n + C2

∞∑
n=0

2n+ 1

3
x2n+1 (4.1.26)

For x < 1
∞∑
n=0

(n+ 1)x2n =
1

(1− x2)2
(4.1.27)

∞∑
n=0

2n+ 1

3
x2n+1 =

3x− x3

3(1− x2)2
(4.1.28)

Where we get c1 and c2 front the boundary conditions.
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Example: Harmonic Oscillator

From the spring approximation, x(t = 0) = 0

u =
kx2

2
(4.1.29)

F = −∂u
∂x

= −kx (4.1.30)

which gives the restoring force.
From Newton’s Laws, ma =

∑
i Fi

m
d2x

dt2
= −kx (4.1.31)

d2X

dt2
+
k

m
x = 0 (4.1.32)

d2x

dt2
+ λ2x = 0 (4.1.33)

saying we have t̃ = λt, we again have the Helmholtz equation,

d2x

dt̃2
+ x = 0 (4.1.34)

X = C1 cos
(
t̃
)

+ C2 sin
(
t̃
)

(4.1.35)

from the initial condition, C1 ≡ 0
X = C2 sin

(
t̃
)

(4.1.36)

the other constant now corresponds to the amplitude of our system.
From the Hamiltonian of the system,

Etot =
mv2

2
+
kx2

2
(4.1.37)

v =
dx

dt
= −(−C2)λ cos(λt) (4.1.38)

v2 = C2
2λ

2 cos2(λt) (4.1.39)

v2 +
k

m
x2 =

2Etot

m
(4.1.40)

we now know that λ = k
m

C2
2λ

2 cos2(λt) + C2
2λ

2 sin2(λt) =
2Etot

m
(4.1.41)
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C2
2λ

2
(
cos2(λt) + sin2(λt)

)
=

2Etot

m
(4.1.42)

C2
2λ

2 =
2Etot

m
(4.1.43)

C2
2 =

2Etot

mλ2
(4.1.44)

C2
2 =

2Etot

k
(4.1.45)

C2 =

√
2Etot

k
(4.1.46)

x =

√
2Etot

k
sin
(
t̃
)

(4.1.47)
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4.2 Lecture 11: September 26, 2012

Review: Harmonic Oscillator

Classical Case

1. Newton Equation x(t)

2. Solution for x(t) in sin(λx), cos(λx)

3. Energy Etot → const, which gives the amplitude

A =

√
2Etot

k
(4.2.1)

Etot = 0 → A = 0 (4.2.2)

Example: Harmonic Quantum Oscillator

For conservation of energy,

Ĥψ = Eψ (4.2.3)

where, ψ is the wave function, E is the energy, Ĥ is the Hamiltonian operator.

Energy = Etot =
mv2

2
+
kx2

2
(4.2.4)

We define
√

k
m

= ω0 with p = mv, and now

Etot =
p2

2m
+
mω2

0

2
x2 (4.2.5)

For 1D,

Ĥ = − ~2

2m

∂2

∂x2
+
mω2

0

2
x2 (4.2.6)

thus,

− ~2

2m

∂2ψ

∂x2
+
mω2

0

2
x2ψ = Eψ (4.2.7)

this is different from the classical case of

m
d2x

dt2
+ kx = 0 (4.2.8)

With ~ = h
2π

,

∂2ψ

∂x2
+

2mE

~2
ψ − m2ω2

0x
2

2~
ψ = 0 (4.2.9)
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Rescaling our length system,

x2
0 =

~
mω0

[=]
ML2t−2t

Mt−1
= L2 (4.2.10)

so we define,
x

x0

= ξ; ε =
2E

~ω
; (ε− ξ2) 6= constant (4.2.11)

∂2ψ

∂ξ2
+ (ε− ξ2)ψ = 0 (4.2.12)

note this is not the same as,
d2x

dt2
+ λ2x = 0. (4.2.13)

For large ξ, |ξ2| � ε
∂2ψ∞
∂ξ2

− (ξ2)ψ∞ = 0 (4.2.14)

ψ∞(ξ) = e±ξ
2/2 (4.2.15)

∂ψ∞
∂ξ

= ±ξe±ξ2/2 (4.2.16)

∂2ψ∞
∂ξ2

= ξ2e±ξ
2/2 ± e±ξ

2/2 (4.2.17)

=
(
ξ2 ± 1

)
e±ξ

2/2 (4.2.18)

Because the solution must be finite as ξ →∞, we simplify to

ψ(ξ) = η(ξ)e−ξ
2/2 (4.2.19)

∂ψ∞
∂ξ

=
∂η

∂ξ
e−ξ

2/2 + ηe−ξ
2/2(−ξ) (4.2.20)

∂2ψ

∂ξ2
=
∂2η

∂ξ2
e−ξ

2/2 − 2ξ
∂η

∂ξ
e−ξ

2/2 − ηe−ξ
2/2 + ξ2ηe−ξ

2/2 (4.2.21)

Simplifying out the exponential terms by setting the equation equal to zero,

∂2η

∂ξ2
− 2ξ

∂η

∂ξ
+ (ε− 1)η = 0 (4.2.22)

Now we can expand by a series with the above equation as the determining identity,

ηξ =
∞∑
n=0

Cnξ
n (4.2.23)

∂η

∂ξ
=
∞∑
n=0

Cnnξ
n−1 (4.2.24)

∂2η

∂ξ2
=
∞∑
n=0

Cnn(n− 1)ξn−2 (4.2.25)
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Substituting,

∞∑
n=0

Cnn(n− 1)ξn−2 − 2
∞∑
n=0

Cnnξ
n + (ε− 1)

∞∑
n=0

Cnξ
n = 0 (4.2.26)

transforming the indices of the first summation, n(n− 1)→ (n+ 2)(n+ 1),

∞∑
n=0

[Cn+2(n+ 2)(n+ 1)− 2Cnn+ (ε− 1)Cn] ξn = 0 (4.2.27)

This gives a recursion formula,

Cn+2 =
[2n− (ε− 1)]Cn
(n+ 2)(n+ 1)

(4.2.28)

From physical arguments we know that C1 = 0, but C0 6= 0,

ψ(ξ) = η(ξ)e−ξ
2/2 =

∞∑
n=0

C2nξ
2ne−ξ

2/2 (4.2.29)

Now ,observing the series of ξ2n we recognize that this is in fact similar to e2ξ. Thus our
solution still blows up as we go to infinity. For n terms, Cn+2 = 0, Cn 6= 0,

[2n− (ε− 1)]Cn
(n+ 2)(n+ 1)

= 0 (4.2.30)

Which gives 2n− (ε− 1) = 0, and we have the condition,

ε = 2n+ 1, n = 0, 1, 2, 3, . . . (4.2.31)

Now we investigate the situation for finite values of n.

ηξ =

nl∑
n=0

Cnξ
n (4.2.32)

Cn+2 =
[2n− (ε− 1)]Cn
(n+ 2)(n+ 1)

(4.2.33)

We thus get the Hermite polynomials ,

Hn(ξ)→ ηn(ξ) = An Hn(ξ) (4.2.34)

where,

Hn(ξ) = (−1)neξ
2 dne−ξ

2

dξn
(4.2.35)

To normalize, ˆ ∣∣ψ2
∣∣ dV = 1 (4.2.36)
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An =

√
1

2nn!
√
π

√
~

mω0

(4.2.37)

So,

ε =
2E

~ω0

= 2n+ 1 (4.2.38)

E =
2n+ 1

2
~ω0

= (n+
1

2
)~ω0 (4.2.39)

E0 =
1

2
~ω0 (4.2.40a)

E1 =
3

2
~ω0 (4.2.40b)

E2 =
5

2
~ω0 (4.2.40c)

· · ·

Comparison of Classical and Quantum Oscillators

1. Lowest energy

Classical: E = 0, Quantum: E = 1
2
~ω0 So, even at T = 0K there is still energy in the

system.

ψ0 = A0e−ξ
2/2, H0(ξ) = 1 (4.2.41)

ρ0(ξ) =
∣∣ψ2
∣∣ = A2

0e−ξ
2

(4.2.42)

A2
0

ˆ ∞
−∞

e−ψ
2

dψ = 1 (4.2.43)

Thus, we find things such as tunneling for the quantum particle. We also observe uncer-
tainty,

∆p∆x ≥ ~
2

(4.2.44)

∆p2∆x2 ≥ ~2

4
(4.2.45)

〈p〉 = 0 (4.2.46)

〈
(p− 〈p〉)2〉 =

〈
∆p2

〉 〈
∆x2

〉
(4.2.47)
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〈
p2
〉 〈
x2
〉

=
~2

4
(4.2.48)

〈
x2
〉

=
~2

4 〈p2〉
(4.2.49)

For the energy,

〈E〉 =
〈p2〉
2m

+
mω2

0

2

〈
x2
〉

(4.2.50)

=
〈p2〉
2m

+
mω2

0~2

8 〈p2〉
(4.2.51)

With equilibrium,
∂ 〈E〉
∂ 〈p2〉

= 0 (4.2.52)

we get, 〈
p2
〉

=
mω0~

2
(4.2.53)

Simplifying, we can conclude,

Emin =
~

2m
(4.2.54)
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4.3 Lecture 12: October 1, 2012

Test will be take-home, the week of October 15th.

Legendre Equation(
1− x2

)
y′′(x)− 2xy′(x) + α (α + 1) y(x) = 0 (4.3.1)

where α (and (α + 1)) is a constant.

y′′(x) + P (x)y′(x) + q(x)y(x) = 0 (4.3.2)

where P (x) = −2x
(1−x2)

, and q(x) = α(α+1)
(1−x2)

. Since we work in a coordinates which is naturally

limited it is reasonable to represent this solution on a confined domain, such as [−1, 1].

y(x) =
∞∑
n=0

Cnx
n (4.3.3)

By recursion, for n ≥ 0,

Cn+2 = −(α− 1) (α + n+ 1)

(n+ 1) (n+ 2)
Cn (4.3.4)

For example,

C2 = −α(α + 1)

2× 1
C0 (4.3.5)

We can separate the even and the odd coefficients with even as y1(x) and odd as y2(x), or

y1(x) =
∞∑
n=0

C2nx
2n (4.3.6)

y2(x) =
∞∑
n=0

C2n+1x
2n+1 (4.3.7)

What we find is that for any integer value of α, one of these series is truncated, while
the other is divergent. e.g.. for α = 0, we get that C2 = 0, C4 = 0, . . .. For α = 1, we find
C3 = 0, C5 = 0, . . .. So we set up a formula, fn(x) where n = α. The terms of this formula
are,

f0(x) = 1, (4.3.8)

f1(x) = x, (4.3.9)

f2(x) = 1− 3x2, (4.3.10)

f3(x) = x− 5x3, (4.3.11)

· · ·
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So we find the Legendre polynomials ,

P0(x) = 1, (4.3.12)

P1(x) = x, (4.3.13)

P2(x) =
1

2

(
1− 3x2

)
, (4.3.14)

P3(x) =
1

2

(
3x− 5x3

)
, (4.3.15)

· · ·

which are generated by the formula,

Pn(x) =
1

2n

n/2∑
j=0

(−1)j (2n− 2j)!

j! (n− j)! (n− 2j)!
xn−2j (4.3.16)

x = cos(θ) (4.3.17)

We find that this is useful in solving equations in spherical coordinates,

∇2F = 0 (4.3.18)

∇2F = f(r) (4.3.19)

Series Solutions near an Ordinary Point

y(x) =
∞∑
n=0

Cnx
n+r (4.3.20)

For a fractional value of r, we will need to use the Frobenius Series Method . With

y′′(x) + P (x)y′(x) + q(x)y(x) = 0 (4.3.21)

we may find that P (x) or q(x) is divergent, or has a singularity around a value. An example
is 1

x−x0 , where the solution diverges at x = x0. We also observe this for 1
(x−x0)2

, where the
solution diverges at x = x0, however, this is more strongly divergent. If both of the following
conditions are fulfilled, then the Frobenius method may be used,

lim
x→x0

(x− x0)P (x)→ finite (4.3.22)

lim
x→x0

(x− x0)2q(x)→ finite (4.3.23)
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Illustration of method

2xy′′(x) + 3y′(x)− y(x) = 0 (4.3.24)

Rewriting into standard form,

y′′(x) +
3

2x
y′(x)− 1

2x
y(x) = 0 (4.3.25)

Now investigating the limiting behavior around the singularities,

lim
x→0

x
3

2x
=

3

2
→ finite, (4.3.26)

and

lim
x→0

x2−1

2x
= 0→ finite. (4.3.27)

Thus, we have a good candidate for applying the Frobenius method.
Substituting the series form,

a0r (2r + 1)xr−1 +
∞∑
n=1

[(n+ r)(2n+ 2r + 1)an − an−1]xn+r−1 = 0 (4.3.28)

We know find the indicial equation (when n = 0), where we have non-trivial solutions

a0r(2r + 1) = 0. (4.3.29)

Since a0 cannot be zero,
r(2r + 1) = 0, (4.3.30)

and we get solutions of r1 = 0 and r2 = −1
2
. These correspond to two different power series

solutions.

y1(x) =
∞∑
n=0

bnx
n (4.3.31)

y2(x) = x1/2

∞∑
n=0

cnx
n (4.3.32)

From the first equation we get a recursion formula of,

n(2n+ 1)bn − bn−1 = 0 (4.3.33)

bn =
bn−1

n(2n+ 1)
(4.3.34)

bn =
2n

(2n+ 1)!
b0 (4.3.35)

Similarly, for the second series (r = −1/2),

cn =
2nc0

(2n)!
(4.3.36)
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Finally, we have the solution,

y(x) = b0

∞∑
n=0

2n

(2n+ 1)!
xn + c0x

−1/2

∞∑
n=0

2n

(2n)!
xn (4.3.37)

For repeated roots r1 = r2 see pages 595–599.

Bessel Equation and Bessel Functions

The Bessel equation,

x2y′′(x) + xy′(x) +
(
x2 − ν2

)
y(x) = 0 (4.3.38)

the constant, ν ≥ 0, (pronounced ‘nu’), gives the order of the Bessel equation. In standard
form,

y′′(x) + P (x)y′(x) + q(x)y(x) = 0 (4.3.39)

where P = 1
x
, and q(x) = 1− ν2

x2
. We see that xP (x) = 1, and x2q(x) = x2 − ν2 and we can

use the method of Frobenius. So we have a series y(x) =
∑∞

n=0 anx
n+r. Substituting,

(
r2 − ν2

)
a0x

r +
∞∑
n=1

{[
(r + n)2 − ν2

]
an + an−2

}
xn+r = 0 (4.3.40)

We get r2 − ν2 = 0, or r = ±ν. For n ≥ 2[
(r + n)2 − ν2

]
an − an−2 = 0 (4.3.41)

We find in our case, for ν = 0 that r1 = r2 = 0. In this special case,

y1(x) =
∞∑
n=0

anx
n (4.3.42)

y2(x) = y1(x) ln(x) + x
∞∑
n=0

bnx
n (4.3.43)

With the solution of,

y(x) = c1y1(x) + c2y2(x) (4.3.44)

y1(x) = J0(x) (4.3.45)

which is the zeroth order Bessel function of the first kind. In total there are four different
kinds of Bessel function.

J0(x) =
∞∑
n=0

(−1)n

(n!)2

(x
2

)2n

(4.3.46)
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In complex form, it is also,

J0(x) =
1

2π

ˆ 2π

0

eix cos(θ) dθ (4.3.47)

=
1

2π

ˆ 2π

0

cos (x sin(θ)) dθ (4.3.48)

y2(x) = Y0(x) ln(x) +
∞∑
n=1

(−1)nHnx
2n

(2n)2(2n− 2)2 · (2)2
(4.3.49)

where Hn =
∑n

i=1
1
i

Thus we have our solution for

y(x) = c1 J0(x) + c2 Y0(x) (4.3.50)

Y0(x) =
2

π

(
γ + ln

(x
2

))
J0(x) (4.3.51)

where the Euler constant is γ = 0.5772 . . ., which is γ = limn→∞ (Hn − ln(n))
For general values of n

Jn(x) =
∞∑
j=0

(−1)j

Γ(j + 1)Γ(j + 1 + n)

(x
2

)2j+1

(4.3.52)
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UNIT 5

Chapter 14—Orthogonal Functions and
Sturm–Liouville Theory

5.1 Lecture 13: October 3, 2012

Orthogonal Functions

(f, g) =

ˆ
fg dx (5.1.1)

where (f, g) is known as the inner product. There are similarities between the inner integral
product and a vector inner product.

For vectors, with an inner product a ·b, where the vectors may be a function of the three
dimensional coordinates

a(x, y, z)

b(x, y, z)

orthogonal is defined using the inner product by

a · b = 0. (5.1.2)

For functions f(x), g(x) with the inner product,

(f, g) =

ˆ

FD

fg dx (5.1.3)

orthogonal is defined by

(f, g) = 0. (5.1.4)

The Cochy–Schwarz inequality;

(f, g)2 ≤ (f, f)(g, g). (5.1.5)
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Since, (f, f) =
´
ff dx, we know have norms,

Nf = (f, f) =

ˆ
f 2 dx (5.1.6)

A normalized function is,

Nf = 1 (5.1.7)

Normalized Orthogonal Functions,

ϕ1(x), ϕ2(x), ϕ3(x), . . .

(ϕi, ϕj) = δij (5.1.8)

δij =

{
0 if i 6= j

1 if i = j
(5.1.9)

This system of normalized, orthogonal vectors is known as a Hilbert space after David Hilbert.

Some examples of orthogonal functions

1√
2π

,
cos(x)√

π
,
sin(x)√

π
,
cos(2x)√

π
,
sin(2x)√

π
, . . .

Fundamental Integration Domain, [0, 2π].

1√
2π

,
eix

√
π
,

ei2x

√
π
, . . .

(f, ḡ) = (f̄ , g) (5.1.10)

Nf =

ˆ ∣∣f 2
∣∣ dx =

ˆ
ff̄ dx (5.1.11)

1√
2π

ˆ
ei(µ−ν)x dx = δµν (5.1.12)

f1, f2, f3, . . . , fr

Linearly independent at least in x
r∑
i=1

cifi 6= 0 (5.1.13)

r∑
i=1

cifi = 0 for each x (5.1.14)
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When f is any function,

f =
∞∑
ν=1

cνϕν (5.1.15)

cν = (f, ϕ) =

ˆ
FD

fϕν dx (5.1.16)

for each ν.
Bessel Inequality (as n→∞)

n∑
ν=1

c2
ν ≤ Nf (5.1.17)

for a complete set,
n∑
ν=1

c2
ν = Nf (5.1.18)

Legendre Polynomials
ˆ 1

−1

Pn(x) Pm(x) dx = 0, for n 6= m (5.1.19)

A generating function for the Legendre polynomials, G,

G(x, t) =
∞∑
n=0

Pn(x)tn (5.1.20)

(n+ 1) Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (5.1.21)

Multiply by tn and sum over n,

∞∑
n=0

(n+ 1) Pn+1(x)tn −
∞∑
n=0

(2n+ 1)xPn(x)tn +
∞∑
n=0

nPn−1(x)tn = 0 (5.1.22)

Now we can see what our terms are,

∞∑
n=0

(n+ 1) Pn+1(x)tn (5.1.23)

∂

∂t

(
∞∑
n=0

Pn(x)tn

)
=
∞∑
n=0

nPn(x)tn−1 =
∂G

∂t
(5.1.24)

−
∞∑
n=0

(2n+ 1)xPn(x)tn = −2
∞∑
n=0

nxPn(x)tn −
∞∑
n=0

xPn(x)tn (5.1.25)

−
∞∑
n=0

xPn(x)tn = −x
∞∑
n=0

Pn(x)tn = −xG (5.1.26)
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−2
∞∑
n=0

xPn(x)tn = −2t
∞∑
n=0

xPn(x)tn = −2t
∞∑
n=0

xPn(x)
∂tn

∂n
= −2tx

∂G

∂t
(5.1.27)

∞∑
n=0

nPn−1(x)tn = (tG)′ =

(
∞∑
n=0

Pn(x)tn

)
=
∞∑
n=0

nPn(x)tn−1 (5.1.28)

∂G

∂t
− 2xt

∂G

∂t
− xG+ t

∂tG

∂t
= 0 (5.1.29)

∂G

∂t
=

(x− t)G
(1− 2xt+ t2)

(5.1.30)

Separating the variables,
dG

G
=

(x− t)
(1− 2xt+ t2)

dt (5.1.31)

ln(G) = −1

2
ln
[
1 + t2 − 2tx

]
+ C1 (5.1.32)

ln(G) = ln

(
1

(1 + t2 − 2tx)1/2

)
+ C1 (5.1.33)

G =
C2

(1 + t2 − 2tx)1/2
(5.1.34)

IC t = 0, G(t=0) = C2 For P0(x) = 1

G =
0∑

n=0

P0t
0 = P0t0 = C2 = 1 (5.1.35)

So we find that the generating function has the following form,

G(x, t) =
1

(1 + t2 − 2tx)1/2
(5.1.36)

Expanding G(x) in a Taylor Series around t = 0,

G(x, 1) = G(x, 0) +
1

1!

∂

∂t
(G(x, t))

∣∣∣∣
t=0

t+
1

2!

∂2

∂t2
(G(x, t))

∣∣∣∣
t=0

t2 +
1

3!

∂3

∂t3
(G(x, t))

∣∣∣∣
t=0

t3 + · · ·

(5.1.37)

Pn(x) =
1

n!

(
∂nG

∂tn

)
t=0

(5.1.38)
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Example: Electrostatics

V =
q

4πε0|r · l|
(5.1.39)

|r · l| =
(
r2 + l2 − 2rl cos(θ)

)1/2
(5.1.40)

V =
q

4πε0 (r2 + l2 − 2rl cos θ)1/2
(5.1.41)

Observing similar forms,

G =
1

(1− 2xt+ t2)1/2
(5.1.42)

where, x = cos(θ) and t = l
r
. So,

V =
q

4πε0r

∞∑
n=0

Pn(cos(θ))

(
l

r

)n
=

q

4πε0

∞∑
n=0

Pn(cos(θ))
ln

rn+1
(5.1.43)

For multiple charges,

V =
q

4πε0

∞∑
n=0

1

rn+1

[∑
j

qjl
n
j Pn(cos(θ))

]
(5.1.44)

this is known as a multipole expansion series. Defining the “Multipole Moments”

Mn =
∑
j

qjl
n
j Pn(cos(θ)) (5.1.45)

Thus,

V =
q

4πε0

∞∑
n=0

Mn

rn+1
(5.1.46)

For the zeroth moment, we find
M0 = q − q = 0 (5.1.47)

M1 =
ql

2
cos(0)− ql

2
cos(θ) (5.1.48)

= µ cos(θ) (5.1.49)

where µ is the dipole moment, ql
2

.
The Dipole,

Vd =
µ cos(θ)

4πε0r2
(5.1.50)
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for Coulombic,

Vc =
q

4πε0r
(5.1.51)

thus dipole interactions drop off much more quickly than the Coulombic forces.

E =∇V (5.1.52)

=
∂V

∂r
er +

1

r

∂V

∂θ
eθ (5.1.53)

= −µ cos(θ)

4πε0r3
er −

µ sin(θ)

4πε0r3
eθ (5.1.54)

f(x) =
∞∑
n=0

an Pn(x) × Pm(x) (5.1.55)

where m is a fixed number,

ˆ 1

−1

f(x) Pm(x) dx =
∞∑
n=0

an

ˆ 1

−1

Pn Pm dx (5.1.56)

ˆ 1

−1

Pn Pm dx =
2

2n+ 1
δnm (5.1.57)

am =
2m+ 1

2

ˆ 1

−1

f(x) Pm(x) dx (5.1.58)

This gives the rule for obtaining the coefficients in the expansion.
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5.2 Lecture 14: October 8, 2012

Orthogonal Polynomials, A General Case

Given a set of orthogonal polynomials,

φ0(x), φ1(x), φ2(x), . . .

if
´ b
a
r(x)φi(x)φj(x) dx = 0 for i 6= j and r(x) as the weight function.

φ0(x) = 1 (5.2.1)

φ1(x) = C1x+ C2 (5.2.2)

ˆ b

a

r(x)φ0(x)φ1(x) dx = C1

ˆ
r(x)x dx+ C2

ˆ
r(x) dx = 0 (5.2.3)

C1 =
−C2

´
r(x) dx´

r(x)x dx
(5.2.4)

Gramm–Schmidt Orthogonalization

In Gramm–Schmidt orthogonalization we can take an infinite number of linearly independent
functions,

v1, v2, v3, . . .

we want on orthonormal basis set of functions,

ϕ1, ϕ2, ϕ3, . . .

ϕ1 =
v1√
Nv1

(5.2.5)

where the normal is,

Nv1 =

ˆ
v2

1 dx (5.2.6)

Now,

ϕ2 = V2 − C ′1ϕ1 (5.2.7)

where we must find C ′1. ˆ
ϕ1 (v2 − C ′1ϕ1) dx = 0 (5.2.8)

Rearranging, ˆ
ϕ1ϕ2 dx = C ′1

ˆ
ϕ2

1 dx (5.2.9)
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ˆ
ϕ2

1 dx = 1 (5.2.10)

C ′1 =

ˆ
ϕ1v2 dx = (ϕ1, v2) (5.2.11)

ϕ3 = v3 − C ′′1 − C ′′2ϕ2 (5.2.12)

Again we want the third term to be orthogonal to both, ϕ1, ϕ2. Going through the same
derivation, we quickly may find that,

C ′′1 = (ϕ1, v3) (5.2.13)

C ′′2 = (ϕ2, v3) (5.2.14)

Sturm–Liouville Theory

In Sturm–Liouville theory , we consider a second order ordinary differential equation of the
form,

[p(x)y′(x)]
′
+ [q(x) + λr(x)] y(x) = 0, (5.2.15)

where by the product rule of differentiation, the first term may alternatively be expressed

[p(x)y′(x)]
′
= p(x)y′′(x) + p′(x)y′(x). (5.2.16)

We have a parameter λ to be used in the solution. We are on a domain[a, b] with boundary
conditions

α1y(a) + α2y
′(a) = 0, (5.2.17)

α1y(b) + α2y
′(b) = 0. (5.2.18)

These terms are zero valued on the right hand side, or homogeneous, so they are not the
most general (although these are Robin boundary conditions—a super-set of Dirchlet and
Neumann boundary conditions). What is important is that these boundary conditions are
real and non-zero. Now we understand that we must find values for λ which are non-
trivial. These values which give real functional solutions to the differential equation are the
eigenvalues . The solutions, y, which correspond to the eigenvalues are the eigenfunctions .

Ly(x) = λr(x)y(x) (5.2.19)

Ly(x) = − [p(x)y′(x)]
′ − [q(x)] y(x) (5.2.20)

for r(x) = 1
Ly(x) = λy(x) (5.2.21)

Ĥψ = Eψ (5.2.22)
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where we have En with n = 1, 2, 3, . . .

Ĥ =
−~
2m
∇2 + U(x, y, z) (5.2.23)

=
−~
2m

d2

dx2
+ U(x) (5.2.24)

We now have to solve the Helmholtz equation. This equation has numerous common appli-
cations in heat transfer, diffusion, fluid transport, and other topics. For a one dimensional
system, this is reduced to

d2y

dx2
+ λy = 0 (5.2.25)

−d2y

dx2
= λy (5.2.26)

Where our linear operator is L = − d2

dx2
. This problem is very common and the solution is

known to be of the form,

y(x) = C1 cos
(√

λ x
)

+ C2 sin
(√

λ x
)
. (5.2.27)

For n

Lyn(x) = λnr(x)yn(x) (5.2.28)

For m

Ly∗m(x) = λ∗mr(x)y∗m(x) (5.2.29)

Multiplying by the opposite functions and integrating,

ˆ
y∗m(x)Lyn(x) dx = λn

ˆ
r(x)yn(x)y∗m(x) dx (5.2.30)

Similarly for the equation for m,

ˆ
yn(x)Ly∗m(x) dx = λ∗m

ˆ
r(x)yn(x)y∗m(x) dx (5.2.31)

Subtracting the two previous equations, we get,

ˆ
y∗m(x)Lyn(x) dx−

ˆ
yn(x)Ly∗m(x) dx = (λn − λ∗m)

ˆ
r(x)yn(x)y∗m(x) dx (5.2.32)

Returning to

Ly(x) = − [p(x)y′(x)]
′ − [q(x)] y(x)

we see,

ˆ
y∗m(x)Lyn(x) dx−

ˆ
yn(x)Ly∗m(x) dx =

[
p(x)

{
y∗m
′yn − y∗my′n

}]b
a

(5.2.33)
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Now we work with the boundary conditions,

α1y(a) + α2y
′(a) = 0 (5.2.34)

α1y(b) + α2y
′(b) = 0 (5.2.35)

We begin with the boundary at a,

α1y(a) + α2y
′(a) = 0 (5.2.36)

α1y(a) = −α2y
′(a) (5.2.37)

y(a) = −α2

α1

y′(a) (5.2.38)

Substituting,

P (a)
α1

α2

y∗m(a)yn(a)− P (a)y∗m(a)
α1

α2

yn(a) (5.2.39)

Types of Sturm–Liouville Problems

We now have different possible cases for the Sturm–Liouville problem,

1. Regular Sturm–Liouville problem on [a, b] where P (x) > 0. We require P (a) 6= 0 and
P (b) 6= 0.

2. Singular Sturm–Liouville problem on [a, b] where P (x) ≥ 0. Here P (a) = 0.

3. Periodic Sturm–Liouville problem on [a, b]. P (a) = P (b)

For our linear operator, ˆ b

a

y∗mLyn dx =

ˆ b

a

ynLy∗m dx (5.2.40)

Self-adjoint operators (also known as Hermitian operators);

(λn − λ∗m)

ˆ
r(x)yn(x)y∗m(x) dx =

ˆ
y∗m(x)Lyn(x) dx−

ˆ
yn(x)Ly∗m(x) dx (5.2.41)

for n = m with I 6= 0,
λn = Re(λn) + i Im(λn) (5.2.42)

λ∗n = Re(λn)− i Im(λn) (5.2.43)

So,
λn = λ∗m (5.2.44)

Thus we cannot have an imaginary system, and thus our λn are real. If, however, λn 6= λm,
(λn − λm) 6= 0. ˆ b

a

r(x)y∗m(x)yn(x) dx = 0 (5.2.45)

Thus, we have eigenfunctions which are orthogonal.
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For the system

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) + λd(x)y(x) = 0 (5.2.46)

Then,
[p(x)y′(x)]

′
+ [p(x) + λr(x)] y(x) = 0 (5.2.47)

p(x) = e
´ b(x)
a(x)

dx (5.2.48)

q(x) =
p(x)c(x)

a(x)
(5.2.49)

r(x) =
p(x)d(x)

a(x)
(5.2.50)

We know that a(x) 6= 0 else we have encountered a difficult singularity.

Eigenfunctions

Eigenfunctions are linearly independent and orthonormal.

f(x) =
∞∑
n=0

anyn(x) (5.2.51)

multiplying by ym and integrating

ˆ b

a

f(x)ym(x) dx =

ˆ b

a

∞∑
n=0

anyn(x)ym(x) dx (5.2.52)

since we know that we have orthogonality, m 6= n. Removing the sums we can solve for the
coefficients, ˆ b

a

f(x)ym(x) dx = am

ˆ b

a

y2
m(x) dx (5.2.53)

and we find

am =

´ b
a
f(x)ym(x) dx´ b
a
y2
m(x) dx

(5.2.54)
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5.3 Lecture 15: October 10, 2012

Greens Functions for Non-homogeneous Equations

Ly(x)− µr(x)y(x) = g(x) (5.3.1)

The Greens function of an equation gives you the solution of the whole left hand side equa-
tions. This speeds up the solution because it allows for changing the right hand sides,
however this procedure is boundary-condition specific. Say,

α1y(a) + α2y
′(a) = 0 (5.3.2)

β1y(b) + β2y
′(b) = 0 (5.3.3)

φn(x) are Eigenfunctions which satisfy the eigenvalue problems. So,

Lφn(x) = λnr(x)φn(x) (5.3.4)

This is the eigenvalue problem. It is in essence a homogeneous problem, which uses the given
boundary conditions. We represent our function as,

g(x) = r(x)f(x) (5.3.5)

or,

f(x) =
g(x)

r(x)
(5.3.6)

We want to use the first equation because this is more useful for the general case where
r(x) 6= 1.

Ly(x)− µr(x)y(x) = λnr(x)f(x) (5.3.7)

y(x) =
∞∑
n=1

anφn(x) (5.3.8)

f(x) =
∞∑
n=1

fnφn(x) (5.3.9)

The coefficients will be

fn =

ˆ b

a

r(x)f(x)φn(x) dx (5.3.10)

multiplying the expression for f(x) by r(x)φm,

ˆ b

a

r(x)f(x)φn(x) dx =

ˆ b

a

r(x)
∞∑
n=1

fn(x)φn(x)φm(x) dx (5.3.11)

With orthogonality we know that for
´ b
a
r(x)φn(x)φm(x) dx = 0 for n 6= m. Substituting in

for our eigenvalues,

∞∑
n=1

λnr(x)φn(x)−
∞∑
n=1

µr(x)anφn(x) =
∞∑
n=1

r(x)fn(x)φn(x) (5.3.12)
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for this equation, we only need to know an, so we can do the multiplication by φl and
integrate. This once again shows by orthogonality that n = l because all other solutions are
zero. i.e. ˆ b

a

r(x)φn(x)φl(x) dx = 0 for n 6= l (5.3.13)

thus with φl 6= 0,
λlal − µal = fl (5.3.14)

al =
fl

λl − µ
(5.3.15)

We can substitute now to get our solution,

y(x) =
∞∑
n=1

fn
λnµ

φn(x) (5.3.16)

Procedure

1. Solve the eigenvalue problem (with B.C.s)

Lφn(x) = λnr(x)φn(x)

because the set of the eigenfunctions are linearly independent and orthogonal.

2. Expand the Non-homogeneous term in series of the eigenfunctions.

3. Substitute the solution in the form

y =
∞∑
n=1

anφn(x)

4. Multiply by one (arbitrarily selected) φl,ˆ b

a

r(x)φn(x)φl(x) dx 6= 0, only for n = l

5. The remaining equation is for al

6. the whole solution is now the infinite series

al =
fl

λl − µ
(5.3.17)

if µ 6= λn for all n there is only one unique solution. If µ = λk, which occurs only if fk = 0,
then there is not a unique solution. If we have a unique solution that is well behaved, we
get,

y(x) =
∞∑
n=1

φn(x)

λn − µ

ˆ b

a

r(x)f(x)φn(x) dx (5.3.18)

=

ˆ b

a

G(x, x′)g(x′) dx′ , (5.3.19)
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where g(x) = r(x)f(x).

G(x, x′) =
∞∑
n=1

φn(x)φnx
′

λn − µ
(5.3.20)

We have thus defined the Greens function for this problem.

Example of a Greens function problem

Let yn(x) is a set of EF for the Sturm–Louville equation. Our function,

d

dx

(
f

dy

dx

)
+ λwy = 0 (5.3.21)

Show that y′n = un for certain boundary conditions. What are the boundary conditions?
We know there is a solution for the simpler Helmholtz equation,

d2y

dx2
+ λy = 0 (5.3.22)

gives cos(λx), sin(λx).
Now,

d

dx

(
f

dym
dx

)
+ λwym = 0 ×

(yn
λ

)
(5.3.23)

d

dx

(
f

dyn
dx

)
+ λwyn = 0 ×

(ym
λ

)
(5.3.24)

Subtracting the two equations,

yn
λ

d

dx

(
f

dym
dx

)
+
yn
λ
λwym −

ym
λ

d

dx

(
f

dyn
dx

)
− ym

λ
λwyn = 0 (5.3.25)

the second terms cancel and,

yn
λ

d

dx

(
f

dym
dx

)
− ym

λ

d

dx

(
f

dyn
dx

)
= 0 (5.3.26)

yn
λ

d

dx

(
f

dy′m
dx

)
− ym

λ

d

dx

(
f

dy′n
dx

)
= 0 (5.3.27)

integrating, ˆ b

a

[
yn
λ

d

dx
(fy′m)− ym

λ

d

dx
(fy′n)

]
dx = 0 (5.3.28)

Integrating by parts,

ˆ b

a

[
yn
λ

d

dx
(fy′m)− ym

λ

d

dx
(fy′m)

]
dx = f

(
yn
λm

y′m −
ym
λn
y′n

)∣∣∣∣b
a

−
(

1

λm
− 1

λn

) ˆ b

a

fy′ny
′
m dx = 0

(5.3.29)
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un = y′n which are orthogonal if the last integral is 0. Returning to the first term,

f

(
yn
λm

y′m −
ym
λn
y′n

)∣∣∣∣b
a

(5.3.30)

Now we have several cases,

1. f(a) = f(b) = 0, we get Legendre polynomials for the solution

2. y(a) = y(b) = 0, we have a trivial case

3. y(a) = 0, y′(b) = 0, we have a trivial case

4. y′(a) = 0, y(b) = 0, we have a trivial case

5. y′(a) = 0, y′(b) = 0, we have a trivial case

Example: Non-homogeneous Helmholtz equation

What is the Greens function for:

d2y

dx2
+ y(x) = f(x) (5.3.31)

1. Start with
d2y

dx2
+ y(x) = 0 (5.3.32)

y =
∞∑
n=1

anφn(x) (5.3.33)

d2φn
dx2

+ φn(x) = 0 (5.3.34)

We get the solutions, then with cos
(√

λn x
)
, sin

(√
λn x

)
.

Now say our boundary conditions are φn(0) = 0 and φ′n(1) = 0. The first BC gives that
the cos

(√
λn x

)
is not necessary. With the second boundary condition, we can now find

values for λn [
sin
(√

λn x
)]′

=
√
λn cos

(√
λn x

)
(5.3.35)

which shows from the boundary condition that,

cos
(√

λn (1)
)

= 0 (5.3.36)

Therefore, √
λn =

π

2
,
3π

2
,
5π

2
, . . . (5.3.37)

√
λn =

(2n− 1)

2
π, n = 1, 2, 3, . . . (5.3.38)
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Our solution terms are thus expressed,

sin

(
(2n− 1)

2
πx

)
, n = 1, 2, 3, . . . (5.3.39)

for
√
Nφ

Nφ =

ˆ b

a

φ2
n dx =

ˆ 1

0

φ2
n dx (5.3.40)

ˆ 1

0

sin2

(
(2n− 1)

2
πx

)
dx =

1

2
+

cos(nπ) sin(nπ)

π(1− 2n)

=
1

2
, for integer values of n (5.3.41)

Thus the normalized eigenfunction is
√

2 sin
(

(2n−1)
2

πx
)

.

We now can find our Greens function,

G(x, x′) =
∞∑
n=1

φn(x)φn(x′)

λn − µ
(5.3.42)

In this example µ = 1, so we can fully express the function by,

G(x, x′) = 2
∞∑
n=1

sin
(

(2n−1)
2

πx
)

sin
(

(2n−1)
2

πx′
)

(
(2n−1)

2
π
)2

− 1
(5.3.43)

Therefore our solution is generally,

y(x) = 2

ˆ 1

0

∞∑
n=1

sin
(

(2n−1)
2

πx
)

sin
(

(2n−1)
2

πx′
)

(
(2n−1)

2
π
)2

− 1
f(x′) dx′ (5.3.44)
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An expanded series solution with,

sin
(√

λn x
)

cos
(√

λn x
)

where we are solving,

d2φn
dx2

+ λnφn = 0 (6.1.1)

This stems from using imaginary exponential basis functions, e.g. e±
√
λn x where we credit

φn = eαx to Euler.

α2eαx + λneαx = 0 (6.1.2)

α2 = −λn (6.1.3)

α = ±i
√
λn (6.1.4)

So we can represent the solution as,

C1e+i
√
λn x + C2e−i

√
λn x (6.1.5)

2C1 = 2C2 = C → cos
(√

λn x
)

(6.1.6)

C1 = −2C2 → sin
(√

λn x
)

(6.1.7)
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Case 1. Homogeneous boundary conditions

φn(0) = φn(L) = 0

Our system is simplified to sin
(√

λn x
)

because of the symmetry of the problem. i.e. from
the first boundary condition

sin
(√

λn 0
)

= 0 (6.1.8)

while the cosine cannot be zero. The first boundary condition gives which boundary con-
ditions we will be using; the second value gives what we will actually do with it. So from
φn(L) = 0, we get

λn =
nπ

L
, n = 1, 2, 3, . . . (6.1.9)

Our solution will now be of the form,

φ(x) =
∞∑
n=1

φn(x) (6.1.10)

=
∞∑
n=1

Cn sin
(nπ
L
x
)

(6.1.11)

So ˆ L

0

φ(x) sin
(nπ
L
x
)

dx =
∞∑
n=1

Cn

ˆ L

0

sin
(nπ
L
x
)

sin
(mπ
L
x
)

dx (6.1.12)

by orthogonality the terms of the right hand side only matter for m = n. The integral on
the right hand side can be simplified further by,

ˆ L

0

sin2
(mπ
L
x
)

dx =
L

2

(
1− sin(2mπ)

2mφ

)
But with m being integer values this simplifies to,

ˆ L

0

sin2
(mπ
L
x
)

dx =
L

2
(6.1.13)

Case 2. Newman boundary conditions

φ′(0) = φ′(L) = 0

In this case, we apply the first boundary condition and we find that the cos(x) function
satisfies the boundary conditions correctly. Thus, we will have the cosine function as our
basis function.

ˆ L

0

cos2
(mπ
L
x
)

dx =
L

2

(
1 +

sin(2mπ)

2mφ

)
=
L

2
(6.1.14)
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φn =

√
L

2
cos
(mπ
L
x
)

(6.1.15)

φn(−L) = φn(L) (6.1.16)

φ′n(−L) = φ′n(L) (6.1.17)

Note: you may solve a problem by exponential series directly, however you will find that
the exponentials will have imaginary terms again and may look similar to,

einπ
L
x − e−inπ

L
x

2i
= sin

(nπ
L
x
)

or
einπ

L
x + e−inπ

L
x

2i
= cos

(nπ
L
x
)

√
λn = nπ

L

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]

(6.1.18)

the first term comes from the zeroth-order term in the cosine expansion.

a0 =
1

L

ˆ L

−L
f(x) dx (6.1.19)

observe that if f(x) = 1, then a0 = 2.

Example using Dirac Delta function

Note that eiπ = cos(π) + i sin(π) and i ln(i) = π
2

f(x) =
∞∑

n=−∞

Cneinπ
L
x (6.1.20)

multiplying by ei kπ
L
x, ˆ L

−L
f(x)e−i kπ

L
x dx

ˆ L

−L
f(x)e−i kπ

L
x dx

ˆ L

−L
f(x)e−i

(n−k)π
L

x dx = 2L
sin((n− k)π)

(n− k)π
(6.1.21)

This turns out to be the Kronecker delta, because limx→0
sin(x)
x

= limx→0
cos(x)

1
= 1

Ck =
1

2L

ˆ L

−L
f(x)e−i kπ

L
x dx (6.1.22)
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Now if we do the delta function,

Ck =
1

2L

ˆ L

−L
δ(x)e−i kπ

L
x dx =

1

2L
(6.1.23)

as it is constant for any Ck we have, in fact, shown the production of white noise. This is
similar for any “delta-correlated” function, e.g.

Ck =
1

2L

ˆ L

−L
δ(x)f(x)e−i kπ

L
x dx = f(0) (6.1.24)

There are three common classes; even, odd, and neither (or mixed). These are defined
by,

• Even, f(−x) = f(x)

• Odd, f(−x) = −f(x)

As cosines are even and sines are odd, we find that this can be used to simplify the solution
system. The Dirac delta function is an even function. If you have an even function, then

ˆ L

−L
fe(x) dx = 2

ˆ L

0

fe(x) dx (6.1.25)

for odd functions, ˆ L

−L
fo(x) dx = 0 (6.1.26)

for function expansions,

ˆ L

−L
fe(x) cos

(nπ
L
x
)

dx = 2

ˆ L

0

fe(x) cos
(nπ
L
x
)

dx (6.1.27)

However, we have an interesting phenomena where

ˆ L

−L
fo(x) sin

(nπ
L
x
)

dx = 2

ˆ L

0

fo(x) sin
(nπ
L
x
)

dx (6.1.28)

because the negatives cancel out. Mixing the systems

ˆ L

−L
fo(x) cos

(nπ
L
x
)

dx = 0 (6.1.29)

and ˆ L

−L
fe(x) sin

(nπ
L
x
)

dx = 0. (6.1.30)

Returning to the sine and cosine expansion,

an =
1

L

ˆ L

−L
f(x) cos

(nπ
L
x
)

dx (6.1.31)
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bn =
1

L

ˆ L

−L
f(x) sin

(nπ
L
x
)

dx (6.1.32)

If f(x) is odd, an = 0 and if f(x) is even, bn = 0.
We want the series to be convergent. So we know the Bessel inequality,

1

L

ˆ L

−L
f 2(x) dx ≥ a0

2
+
∞∑
n=1

(
a2
n + b2

n

)
(6.1.33)

one example of a divergent integral is given by setting f(x) = 1
x
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6.2 Lecture 17: October 17, 2012

“A big part of math problems is that you get
trained to recognize patterns.” —Dr. Petsev

Newton’s Equation of Gravitational Motion

The solution of the second problem of the second homework is as follows; in the x-direction

m
d2x

dt2
= − kx

(x2 + y2)3/2
(6.2.1a)

in the y-direction,

m
d2y

dt2
= − ky

(x2 + y2)3/2
(6.2.1b)

To transform to polar coordinates,

x = r cos(θ), (6.2.2a)

y = r sin(θ). (6.2.2b)

We also know r2 = x2 + y2 and θ = arctan
(
y
x

)
. Now substituting directly into the system,

for the right hand side

− kx

(x2 + y2)3/2
= −kr cos(θ)

(r2)3/2
= −k cos(θ)

r2
, (6.2.3a)

− ky

(x2 + y2)3/2
= −kr sin(θ)

(r2)3/2
= −k sin(θ)

r2
. (6.2.3b)

Now, the left hand sides may also be substituted,

m
d2r cos(θ)

dt2
= −k cos(θ)

r2
, (6.2.4a)

m
d2r sin(θ)

dt2
= −k sin(θ)

r2
. (6.2.4b)

Expanding the LHS of the x,

cos(θ)
d2r

dt2
− 2 sin(θ)

dθ

dt

dr

dt
− r cos(θ)

(
dθ

dt

)2

− r sin(θ)
d2θ

dt2
= − k

m

cos(θ)

r2
, (6.2.5a)

sin(θ)
d2r

dt2
+ 2 cos(θ)

dθ

dt

dr

dt
− r sin(θ)

(
dθ

dt

)2

+ r cos θ
d2θ

dt2
= − k

m

sin(θ)

r2
. (6.2.5b)

Multiplying the first by cos(θ) and the second by sin(θ), we find by adding the two

(
cos2(θ) + sin2(θ)

) d2r

dt2
−
(
cos2(θ) + sin2(θ)

)
r

(
dθ

dt

)2

= − k
m

cos2(θ) + sin2(θ)

r2
. (6.2.6)
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So we have our solution for the radial coordinate,

d2r

dt2
− r

(
dθ

dt

)2

= − k
m

1

r2
. (6.2.7)

Now doing essentially the opposite, we multiply the first by sin(θ) and the second by cos(θ)
and then subtracting the two,

−2
(
cos2(θ) + sin2(θ)

) dθ

dt

dr

dt
− r

(
cos2(θ) + sin2(θ)

) d2θ

dt2
= 0, (6.2.8a)

−2
dθ

dt

dr

dt
− rd2θ

dt2
= 0; (6.2.8b)

which may also be expressed by,

1

r

d

dt

(
mr2 dθ

dt

)
= 0 . (6.2.8c)

Elliptic Coordinates

Reviewing the first problem in the second homework,

x = a cosh(η) cos(ψ), (6.2.9a)

y = a sinh(η) sin(ψ). (6.2.9b)

part (d) was a little more trouble, ∇ ·A. So we need to find the metric coefficients,

hη =

[(
∂x

∂η

)2

+

(
∂y

∂η

)2
]1/2

= a

√
cosh2(η) sin2(ψ) + cos2(ψ) sinh2(η) , (6.2.10a)

hψ =

[(
∂x

∂ψ

)2

+

(
∂y

∂ψ

)2
]1/2

= a

√
cosh2(η) sin2(ψ) + cos2(ψ) sinh2(η) , (6.2.10b)

and we find,
hη = hψ. (6.2.10c)

This further may be simplified to,

hη = hψ = a
(
cosh2(η)− cos2(ψ)

)1/2
. (6.2.11)

Now returning to the divergence,

∇ ·A =
1

hηhψ

[
∂(hψAη)

∂η
+
∂(hηAψ)

∂ψ

]
. (6.2.12)

The laplacian is,

∇2f =
1

hηhψ

[
∂

∂η

(
hψ
hη

∂Aη
∂η

)
+

∂

∂ψ

(
hη
hψ

∂Aψ
∂ψ

)]
. (6.2.13)
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Fourier Series Solution of Non-homogeneous Ordinary Differential
Equations

A simple second order linear differential equation,

y′′(x) + y(x) = f(x), (6.2.14)

where we have the linear operator L = d2

dx2
+ 1, which has eigenfunctions in terms of sin(x)

and cos(x). So we expand the right hand side,

f(x) =
a0

2
+
∞∑
n=1

an cos
(nπ
L
x
)

+
∞∑
n=1

bn sin
(nπ
L
x
)

(6.2.15)

with our solution,

y(x) =
A0

2
+
∞∑
n=1

An cos
(nπ
L
x
)

+
∞∑
n=1

Bn sin
(nπ
L
x
)
. (6.2.16)

Thus the left hand side can be expanded as well and set equal to the right hand side. This
gives,

A0

2
+
∞∑
n=1

[
An

(
1− n2π2

L2

)
cos
(nπ
L
x
)

+Bn

(
1− n2π2

L2

)
sin
(nπ
L
x
)]

=
a0

2
+
∞∑
n=1

an cos
(nπ
L
x
)

+
∞∑
n=1

bn sin
(nπ
L
x
)
.

We find that our coefficients are simply,

An =
anL

2

L2 − n2π2
, (6.2.17a)

Bn =
bnL

2

L2 − n2π2
. (6.2.17b)

With our boundary conditions of y(x=0) = y(x=L) = 0, we know that we do not need the
cosine terms because those functions have the correct symmetry,

y(x) =
∞∑
n=1

bnL
2

L2 − n2π2
sin
(nπ
L
x
)
. (6.2.18)

Integrating and multiplying with sine on both sides,ˆ L

0

f(x) sin
(nπ
L
x
)

dx = bm
L2

L2 − n2π2

ˆ L

0

sin2
(nπ
L
x
)

dx . (6.2.19)

The integral on the right hand side is simplifiedˆ L

0

sin2
(nπ
L
x
)

dx = L

[
1− cos(mπ)

mπ

]
(6.2.20)

where m is an integer. So we can simplify the system, m = 1 gives 2
π
, m = 2 gives 0, m = 3

gives 1
3

2
π
. Then

1− cos(mπ)

mπ
=

[
1 + (−1)m+1]

mπ
. (6.2.21)
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Example: Wave equation

A general oscillator with the friction term, γ dx
dt

, and source term, F (x),

m
d2x

dt2
+ γ

dx

dt
+ kx = F (x). (6.2.22)

We know from the system symmetry that the eigenfunctions are sin
(

2(n−1)π
t0

t
)
, n = 1, 2, 3, . . ..

t

F

F0

−F0

t0

−t0

F

Figure 6.1. Forcing function

So we may manipulate the equation forms,
ˆ t0

−t0
F (t) sin

(
2(n− 1)π

t0
t

)
dt =

ˆ 0

−t0
F (t) sin

(
2(n− 1)π

t0
t

)
dt+

ˆ t0

0

F (t) sin

(
2(n− 1)π

t0
t

)
dt

= −F0

ˆ 0

−t0
sin

(
2(n− 1)π

t0
t

)
dt+ F0

ˆ t0

0

sin

(
2(n− 1)π

t0
t

)
dt

= 2F0

ˆ t0

0

sin

(
2(n− 1)π

t0
t

)
dt . (6.2.23)

For the integrals on the right hand side of the equation,

2

π

cos2(nπ)

(2n− 1)
+

2

π

cos2(nπ)

(2n− 1)
=

4

π

1

(2n− 1)
. (6.2.24)

Integrating the left hand side of the equation,

Fn(t) =
4

π

1

(2n− 1)
sin

(
2(n− 1)π

t0
t

)
. (6.2.25)
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Now we may substitute back into the original differential equation,

m
d2xn
dt2

+ γ
dxn
dt

+ kxn =
4

π

1

(2n− 1)
sin

(
2(n− 1)π

t0
t

)
. (6.2.26)

Clearly this matches well with solutions of the form,

xn = e−
γt
2m (C1 sin(Ωt) + C2 cos(Ωt)) + Cn [sin(ωnt+ φn)] , (6.2.27)

where Ω = (4km−γ)1/2

2m
and ψn = const. For the solution,

−bmm [γωn cos(ωnt) + (ω2m− k) sin(ωnt)]

k2 − 2kω2
nm+ γ2m− ω4

nm
2

= Cn. (6.2.28)

Now,

sin(ωnt+ φn) = sin(ωnt) cos(φn) + cos(ωnt) sin(φn), (6.2.29)

= γωn cos(ωnt) +
(
ω2m− k

)
sin(ωnt), (6.2.30)

because

sin(φn) = γωn, (6.2.31a)

cos(φn) =
(
ω2
nm− k

)
; (6.2.31b)

tan(φn) =
γωn

(ω2
nm− k)

. (6.2.31c)

Thus,

φn = arctan

(
γωn

ω2
nm− k

)
, (6.2.32)

and

ωn =
(2n− 1) π

t0
; (6.2.33)

where our terms,
Cn = (ωnt+ φn) . (6.2.34)
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UNIT 7

Chapter 16—Partial Differential Equations

7.1 Lecture 18: October 22, 2012

Now we may have functions of several variables, e.g. F (x, t), or F (x, y, z, t). There are
multiple classes of PDEs,

1. Homogeneous or Non-homogeneous

2. Linear and Nonlinear

3. Constant or variable coefficients

1. Elliptic PDEs

Two major examples include the Laplace and Poisson equations;

∇2F = 0, (7.1.1)

and
∇2F = f(x, y, z). (7.1.2)

In three dimensions the Laplacian operator is,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (7.1.3)

Helmholtz equation is another common example,

∇2F + κ2F = 0. (7.1.4)

This system often describes the steady-state nature of some systems.

2. Hyperbolic PDEs

One very notable hyperbolic equation is the wave equation

∇2F =
1

α2

∂2F

∂t2
(7.1.5)

This type of system is least common in chemical and nuclear engineering.

97



Petsev and Benner Unit 7. Chapter 16—Partial Differential Equations

3. Parabolic PDEs

These are often mixed form equations such as,

a∇2F =
∂F

∂t
. (7.1.6)

This category is very commonly used in our disciplines.

• Heat Transfer (Energy)

• Diffusion (Mass Transfer)

• Fluid flow (Viscosity)

• Schrodinger’s Equation (Electron Structure)

Initial and Boundary Conditions

Need to have the boundary and initial conditions to complete the problem. The nature of
a PDE is that it is only the description of the physical variable balance around a particle.
This however needs to be further specified by the values at the edges of our solution space.

Example: Oscillating String

Assuming small amplitude for the string oscillation, considering only oscillates in one direc-
tion. Observing two nearby points, P and Q, on the string, we have angles α and β to give
the projection onto x. τ1 cosα = τ2 cos β, τ2 sin β − τ1 sinα = net tension.

τ2 sin β − τ1 sinα = ma (7.1.7)

ρ∆x = m (7.1.8)

τ2 sin β − τ1 sinα = ma (7.1.9)

ma = ρ∆x
∂2u

∂t2
(7.1.10)

τ2 sin β − τ1 sinα = ρ∆x
∂2u

∂t2
(7.1.11)

tanα =
∆u

∆x
=
∂u

∂x

∣∣∣∣
x

(7.1.12)

tan β =
∆u

∆x
=
∂u

∂x

∣∣∣∣
x+∆x

(7.1.13)

∂u

∂x

∣∣∣∣
x+∆x

− ∂u

∂x

∣∣∣∣
x

=
ρ∆x

τ

∂2u

∂t2
(7.1.14)
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∂u
∂x

∣∣
x+∆x

− ∂u
∂x

∣∣
x

∆
=
∂2u

∂x2
=
ρ

τ

∂2u

∂t2
(7.1.15)

for τ/ρ = v2,
∂2u

∂x2
=

1

v2

∂2u

∂t2
(7.1.16)

Now we have boundary conditions, u(0, t) = u(L, t) = 0, and initial conditions, u(x, 0) =
f(x) and ut(x, 0) = g(x).

Solution with separation of variables

u(x, t) = X(x)T (t) (7.1.17)

Substituting into the main equation we get the equation,

T
d2X

dx2
=

1

v2
X

d2T

dt2
(7.1.18)

Dividing by XT , we simplify to,

v2

X

d2X

dx2
=

1

T

d2T

dt2
= −ω2 (7.1.19)

Now splitting into two equations,

v2

X

d2X

dx2
= −ω2 (7.1.20)

and
1

T

d2T

dt2
= −ω2 (7.1.21)

These equations are of the Helmholtz type, with solutions of sin, cos. So, d2T
dt2

+ ω2T = 0.
Then the solutions are, T (t) = A sin(ωt) +B cos(ωt). For the x directions we have similarly
that, d2X

dx2
+ κ2x = 0 where k2 = enable κ2 = ω2

v2
. This also gives solution,

X(x) = C sin(kx) = C sin(vx) +D cos(κx) (7.1.22)

Xn(x) = Cn sin
(nπ
L
x
)

(7.1.23)

ˆ L

0

XnXn dx =

√
2

L
(7.1.24)

Xn =

√
2

L
sin
(nπ
L
x
)

(7.1.25)

k =
ω

v
=

2π

λn
(7.1.26)

99



Petsev and Benner Unit 7. Chapter 16—Partial Differential Equations

un = [An sin(ωnt) +Bn cos(ωnt)] sin
(nπ
L
x
)√ 2

L
(7.1.27)

λn =
2L

n
, n = 1, 2, 3, . . . (7.1.28)

u(x, 0) =
∞∑
n=1

BnXn(x) (7.1.29)

Now multiplying by Xm,

ˆ L

0

f(x)Xm(x) dx =
∞∑
n=1

Bn

ˆ L

0

Xm(x)Xn(x) dx , (7.1.30)

=
∞∑
n=1

Bnδnm, (7.1.31)

= Bm. (7.1.32)

Thus,

Bm =

ˆ L

0

f(x)Xm(x) dx (7.1.33)

For the second conditions with the derivative of u

ut(x, 0) = g(x) =
∞∑
n=1

ωnAnXn(x) (7.1.34)

Am =
1

ωn

ˆ L

0

g(x)Xm dx (7.1.35)

Our final solution,

u(x, t) =
∞∑
n=1

{[
1

ωn

ˆ L

0

g(x)Xm dx

]
sin(ωnt) +

[ˆ L

0

f(x)Xm(x) dx

]
cos(ωnt)

}√
2

L
sin
(nπ
L
x
)

(7.1.36)
Now for example we can say f(x) = 2 sin

(
π
2
x
)

and g(x) = x2, we get

Bn =

ˆ √
2

L
sin
(nπ
L
x
)

2 sin
(π

2
x
)

dx (7.1.37)

=
8
√

2L sin(Lπ/2)

π (L2 − 4n2)
(7.1.38)

An =
1

ωn

ˆ L

0

x2

√
2

L
sin
(nπ
L
x
)

dx (7.1.39)

=
1

ωn

√
2L5 [(2− n2π2) cos(nπ)− 2]

n3π3
(7.1.40)
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7.2 Lecture 19: October 24, 2012

Example: Membrane vibration in cylindrical coordinates

Say we have an a× b in x and y rectangular membrane, we see the system is described by

∂2u

∂x2
+
∂2u

∂y2
− 1

c2

∂2u

∂t2
= 0. (7.2.1)

Boundary conditions (homogeneous) u(boundaries, t) = 0, where the boundaries are, x =
0, x = a, y = 0, y = b. Our initial conditions are

u(x, y, t=0) = S(x, y), (7.2.2a)

u′(x, y, t=0) = V (x, y); (7.2.2b)

where S(x, y) and V (x, y) are known. We have a limited system so we want to look for a
solution using separation of variables, or

U(x, y, t) = X(x)Y (y)T (t). (7.2.3)

Substituting this form,

Y (y)T (t)
d2X(x)

dx2
+X(x)T (t)

d2Y (y)

dy2
− 1

c2
X(x)Y (y)

d2T (t)

dt2
= 0. (7.2.4)

Dividing the equation by X(x)Y (y)T (t) and rearranging,

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
=

1

c2

1

T (t)

d2T (t)

dt2
= −α2 (7.2.5)

where we have set it equal to a constant.
Focussing on the time component,

d2T (t)

dt2
+ α2c2T (t) = 0, (7.2.6)

or in a more standard form

d2T (t)

dt2
+ ω2T (t) = 0, where ω2 = α2c2. (7.2.7)

We again know the form of the solution to this equation is,

T (t) = A sin(ωt) +B cos(ωt). (7.2.8)

Now returning to our spacial system,

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
= −α2 (7.2.9)
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say, each of the terms are also constants,

1

X(x)

d2X(x)

dx2
= −p2, (7.2.10a)

1

Y (y)

d2Y (y)

dy2
= −q2, (7.2.10b)

with p2+q2 = α2. So we now have reduced our solutions to the following ordinary differential
equations,

d2X(x)

dx2
+ p2X(x) = 0, (7.2.11a)

d2Y (y)

dy2
+ q2Y (y) = 0. (7.2.11b)

From the boundary conditions, we know that we can reduce the solutions in x and in y to
the eigenvalue problem

Xn(x) = sin(px), (7.2.12a)

Yn(y) = sin(qy), (7.2.12b)

with p = nπ
a

and q = mπ
b

. This gives αnm =
√

n2

a2
+ m2

b2
or ω = cπ

√
n2

a2
+ m2

b2
. Now we have

the form of the solution,

u(x, y, t) =
∞∑
n=1

∞∑
m=1

un(x, y, t) (7.2.13)

=
∞∑
n=1

∞∑
m=1

[Anm sin(ωnmt) +Bnm cos(ωnmt)] sin
(nπ
a
x
)

sin
(mπ
b
y
)

(7.2.14)

Expanding our initial condition,

S(x, y) =
∞∑
n=1

∞∑
m=1

Bnm sin
(nπ
a
x
)

sin
(mπ
b
y
)

(7.2.15)

using orthogonality we can solve the coefficients, Bnm. So multiplying by sin
(
p′π
a
x
)

sin
(
q′π
b
y
)

,

with p′ and q′ being index integers (not related to p and q above). We have a double inte-
gration,

LHS =

ˆ a

0

ˆ b

0

S(x, y) sin

(
p′π

a
x

)
sin

(
q′π

b
y

)
dy dx (7.2.16)

RHS = Bp′q′

ˆ a

0

ˆ b

0

sin2

(
p′π

a
x

)
sin2

(
q′π

b
y

)
dy dx (7.2.17)

we know, ˆ a

0

sin2

(
p′π

a
x

)
dx =

a

2
− sin(2p′π)

4p′π
=
a

2
, for integers, p′

102



7.2. Lecture 19: October 24, 2012 Methods of Analysis in ChNE

and similarly ˆ b

0

sin2

(
q′π

b
y

)
dy =

b

2
− sin(2q′π)

4q′π
=
b

2

This greatly simplifies the right hand side. We thus have an expression,

Bp′q′ =
2

a

2

b

ˆ a

0

ˆ b

0

S(x, y) sin

(
p′π

a
x

)
sin

(
q′π

b
y

)
dy dx (7.2.18)

We finally only have to find the Anm coefficients. This follows the same methodology as
before, with,

V (x, y) =
∞∑
n=1

∞∑
m=1

(Anmωnm cos(ωnmt) +Bnmωnm sin(ωnmt)) sin
(nπ
a
x
)

sin
(mπ
b
y
)

(7.2.19)

but the Bnm term goes away because of the sin term, so

V (x, y) =
∞∑
n=1

∞∑
m=1

Anmωnm cos(ωnmt) sin
(nπ
a
x
)

sin
(mπ
b
y
)

(7.2.20)

This gives the very similar result of,

Ap′q′ =
4

abωp′q′

ˆ a

0

ˆ b

0

V (x, y) sin

(
p′π

a
x

)
sin

(
q′π

b
y

)
dy dx (7.2.21)

Thus, we have solved the problem when we simply substitute our coefficients into the full
expression of the solution.

If we had a slightly simpler problem, where a = b and cylindrical coordinates, we would
have a greater symmetry to the problem and our differential equation would be able to be
written

1

r

∂

∂r

(
r
∂u

∂r

)
− 1

c2

∂2u

∂t2
= 0 (7.2.22)

This classic problem is discussed in the textbook and is solved by Bessel functions.

Maxwell Equations and Propogation of Electromagnetic Waves

The Maxwell equations state, the electrical field is conservative,

∇ · E = 0 (7.2.23)

the magnetic field is conservative as well,

∇ ·B = 0 (7.2.24)

∇× E = −∂B

∂t
(7.2.25)
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and the rotation of the magnetic field is related to the electric field,

∇×B = ε0µ0
∂E

∂t
(7.2.26)

We have defined, E as the electric field, B is the magnetic field. The dielectric permittivity
is ε0 and the magnetic permeability is µ0. The speed of light is ε0µ0 = 1

c2
.

−∇φ = E (7.2.27)

and ρr is the charge density.
So from taking the curl the third Maxwell equation,

∇×∇× E = −∇× ∂B

∂t
= − ∂

∂t
(∇×B) = −ε0µ0

∂2E

∂t2
, (7.2.28)

since

− ∂

∂t
(∇×B) = −ε0µ0

∂2E

∂t2
. (7.2.29)

Thus,

∇×∇× E = −ε0µ0
∂2E

∂t2
, (7.2.30)

∇×∇× E =∇ (∇ · E)−∇ · (∇E) , (7.2.31)

because, in general
A×B×C = B (A ·B)− (A ·B) C. (7.2.32)

We know,
∇ · E = 0. (7.2.33)

So, we now have an equation similar to the wave equation, where

∇2E = ε0µ0
∂2E

∂t2
. (7.2.34)

Now,

∇ · E =
ρe
ε0

(7.2.35)

∇×B− 1

c2

∂E

∂t
= µ0J (7.2.36)

where
B =∇×A (7.2.37)

is the definition of A.

−∂B

∂t
= −∇× ∂A

∂t
(7.2.38)

∇×
(

E +
∂A

∂t

)
=∇× (µ0J) (7.2.39)
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since ∇× J = 0, we simplify to

∇×
(

E +
∂A

∂t

)
= 0 (7.2.40)

Calling,

−∇φ = E +
∂A

∂t
(7.2.41)

rearranging,

∇ · E = −∇2φ− ∂

∂t
(∇ ·A) (7.2.42)

From Lorentz, we want to decouple the systems so

∇ ·A +
1

c2

∂φ

∂t
= 0 (7.2.43)

∇ · E = −∇2φ− 1

c2

∂2φ

∂t2
=
ρe
ε0

= 0 (7.2.44)

1

c2

∂2A

∂t2
−∇2A = µ0J = 0 (7.2.45)
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7.3 Lecture 20: October 29, 2012

Returned HW and Midterm.

Parabolic and Elliptic Differential Equations

1D, time-dependent heat equation

∂F

∂t
= α

∂2F

∂x2
(7.3.1)

we have boundary conditions on the spacial domain of [0, L]. It is important to have homo-
geneous boundary conditions, i.e. we want to have our values at the boundaries to be F = 0.
We can redefine our dependent variable if adjust for the values at the boundaries if we have a
non-homogeneous system, or F̃ = const = F . This then allows for a super-position solution.
In the real world, we may have that F = T for temperature distributions or F = Ci for a
concentration in a solution. Now our initial condition is

F (t=0) = f(t)

We may use separation of variables,

F = X(x)Θ(t) (7.3.2)

substituting,

X
dΘ

dt
= αΘ

d2X

dx2
(7.3.3)

deciding by XΘ,
1

αΘ(t)

dΘ

dt
=

1

X(x)

d2X

dx2
= −λ2 (7.3.4)

Separating for our equation of time,

dΘ

dt
+ αλ2Θ = 0 (7.3.5)

we may solve this system easily by rearranging and integrating,
ˆ

1

Θ
dΘ = −

ˆ
αλ2 dt (7.3.6)

and
Θ = Θ0e−αλ

2t (7.3.7)

This solution will show that we can reach a steady state in time, which is a very natural
result.

The spacial part of the problem is solved very similarly to the previous hyperbolic exam-
ple. So with the Helmholtz equation,

d2X

dx2
+ λ2X = 0 (7.3.8)
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where our solution will be expressed by

X(x) = C1 cos(λx) + C2 sin(λx) (7.3.9)

From the first boundary condition, we realize that C1 = 0. From the second boundary
equation we get the solution of the eigenvalues gives,

λ =
nπ

L
, n = 1, 2, 3, . . . (7.3.10)

Now,

Fn = C2n sin
(nπ
L
x
)

Θ0e−αλ
2t (7.3.11)

We can combine the constants C2nΘ0 = Bn to simplify. We will naturally assume this type
of simplification in all future derivations. Thus, our solution looks like,

F (x, t) =
∞∑
n=1

Fn =
∞∑
n=1

Bn sin
(nπ
L
x
)

e−αλ
2t (7.3.12)

Now we must find the values of the Bn from the initial condition. So,

f(x) sin
(mπ
L
x
)

= Bn sin
(nπ
L
x
)

sin
(mπ
L
x
)

(7.3.13)

Integrating both sides and using orthogonality

ˆ L

0

f(x) sin
(mπ
L
x
)

dx = Bn

ˆ L

0

sin2
(mπ
L
x
)

dx (7.3.14)

For the sake of example, let’s say that f(x) = constant. In this case,

ˆ L

0

f(x) sin
(mπ
L
x
)

dx =
L

mπ
(1− cos(mπ)) (7.3.15)

for different m

LHS (m=1) =
2L

π
LHS (m=2) = 0

LHS (m=3) =
2L

3π

For the right hand side,

RHS =

ˆ L

0

sin2
(mπ
L
x
)

dx

=
L

2

(
1− sin(2mπ)

2mπ

)
=
L

2
(7.3.16)
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Thus, for a constant initial condition of F0 we have

Bm =
4F0

mπ
, m = 1, 3, 5, . . . (7.3.17)

This can now be placed into our form of the equation while substituting a new m by 2n− 1
where m = 1, 3, 5, . . . and n = 1, 2, 3, . . .. We find that

F (x, t) =
4F0

π

∞∑
n=1

1

2n− 1
sin
(nπ
L
x
)

e−α(
(2n−1)π

L )
2
t (7.3.18)

Example: Elliptic partial differential equation

Another good example in the book is two-dimensional steady-state heat transfer. This is
useful, and we will modify the example for our own use. We will have a two-dimensional
domain, but we shall modify it to have a semi-infinite y dimension, and a limited x. Thus, our
domains are [0, L] and [0,∞] in x and y, respectively. The general heat transport equation
is,

∂F

∂t
= α∇2F (7.3.19)

which is simplified in steady state to

∇2F = 0 (7.3.20)

The first equation is a parabolic equation, while the second is an elliptic equation. In two
dimensional Cartesian coordinates, we must now solve

∂2F

∂x2
+
∂2F

∂y2
= 0. (7.3.21)

For our boundary conditions,

F (x=0, y) = 0, (7.3.22a)

F (x=L, y) = 0, (7.3.22b)

F (x, y=0) = f(x), (7.3.22c)

F (x, y→∞)→∞. (7.3.22d)

Separating the variables,

F (x, y) = X(x)Y (y) (7.3.23)

by substituting,

Y
d2X

dx2
+X

d2Y

dy2
= 0

and rearranging
1

X

d2X

dx2
= − 1

Y

d2Y

dy2
= −k2. (7.3.24)
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This will give us the Helmholtz equation again in the x spacial direction, so

d2X

dx2
+ k2X = 0, (7.3.25)

with a solution of
X = C1 cos(kx) + C2 sin(kx). (7.3.26)

In the y direction we the the modified Helmholtz equation where we have the sign is now
negative,

d2Y

dy2
− k2Y = 0. (7.3.27)

The solution may be expressed as either hyperbolic sines and cosines or as exponentials. In
principle either should give us the same solutions, however looking at the physical system,
we expect the solution to die out. Thus, it seems most convenient to express the solution as
a function of exponentials.

Y = C3eky + C4e−ky. (7.3.28)

From the boundary conditions, as usual

C1 = 0, (7.3.29a)

k =
nπ

L
, n = 1, 2, 3, . . . ; (7.3.29b)

C3 = 0. (7.3.29c)

So we have

Xn = C2n sin
(nπ
L
x
)
, (7.3.30a)

Yn = C4ne−
nπ
L
y. (7.3.30b)

A solution may be expressed in the form,

Fn = Bn sin
(nπ
L
x
)

e−
nπ
L
y. (7.3.31)

We observe that the exponential has a constant which is now not squared as is the case in
time-dependent solutions. The full solution

F =
∞∑
n=1

Fn (7.3.32)

=
∞∑
n=1

Bn sin
(nπ
L
x
)

e−
nπ
L
y (7.3.33)

for y = 0 the exponential term is simply 1. Thus, we have our bottom boundary condition,

f(x) =
∞∑
n=1

Bn sin
(nπ
L
x
)

(7.3.34)
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Multiplying by sine and integrating, we find that

Bm =

´
f(x) sin

(
mπ
L
x
)

dx´
sin2

(
mπ
L
x
)

dx
(7.3.35)

Again if we set f(x) = F0, a constant, we get the same terms for Bn as in the previous
problem. Finally our solution is

F (x, y) =
4F0

π

∞∑
n=1

1

2n− 1
sin

(
(2n− 1)π

L
x

)
e−

nπ
L
y (7.3.36)

This solution is very similar to the previous problem, only with the different form for the
exponential. The terms of the series are very quickly converging in most cases. Say we choose
the point (L/2, L/2). The first term is 0.2079, the second term is −0.0144, the third term
0.0018, the fourth term −0.000267. We see now that we generally are dropping an order of
magnitude with each term and alternating sign. This shows very strong convergence.

Example: Transient parabolic equation with source term

An example of a parabolic problem may also include a source term,

∂T

∂t
= α

∂2T

∂x2
+ f(x, t). (7.3.37)

The initial and boundary conditions are homogeneous,

T (x=0, t) = 0, (7.3.38a)

T (x=L, t) = 0, (7.3.38b)

T (x, t=0) = 0. (7.3.38c)

We are implicitly assuming that we have uniform temperature initially and that this tem-
perature has been subtracted to make our variable T . So now we ask “How do we separate
the variables here?” We choose to create a homogeneous problem in x. But, we know that
there are eigenfunctions where

Xn ∼ sin
(nπ
L
x
)
, n = 1, 2, 3, . . . . (7.3.39)

So we can assume a solution of the form,

T (x, t) =
∞∑
n=1

Rn(t) sin
(nπ
L
x
)
. (7.3.40)

We may also expand the source as a sine–Fourier expansion to

f(x, t) =
∞∑
n=1

βn(t) sin
(nπ
L
x
)
. (7.3.41)
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The values of the coefficients is quickly found by,

βn(t) =
2

L

ˆ L

0

f(x, t) sin
(nπ
L
x
)

dx . (7.3.42)

The next step is to take the solution and the expansion and place them into the original
differential equation.

∂T

∂t
=
∞∑
n=1

∂Rn

∂t
sin
(nπ
L
x
)

; (7.3.43)

∂T

∂x
=
∞∑
n=1

Rn(t)
nπ

L
cos
(nπ
L
x
)

;

∂2T

∂x2
= −

∞∑
n=1

Rn(t)
(nπ
L

)2

sin
(nπ
L
x
)
. (7.3.44)

We observe an important feature that we have our solution only in terms of sines. Substi-
tuting,

∞∑
n=1

∂Rn

∂t
sin
(nπ
L
x
)

= −α
∞∑
n=1

Rn(t)
(nπ
L

)2

sin
(nπ
L
x
)

+
∞∑
n=1

βn(t) sin
(nπ
L
x
)
. (7.3.45)

Since each individual equation of nth order should be correct.

dRn

dt
sin
(nπ
L
x
)

= −ω2
nRn(t) sin

(nπ
L
x
)

+ βn(t) sin
(nπ
L
x
)
. (7.3.46)

where ω2
n = αn

2π2

L2 and the sines cancel out to give us a simple first order ordinary differential
equation for Rn(t).

dRn

dt
= −ω2

nRn(t) + βn(t). (7.3.47)

The solution is

Rn(t) =

ˆ t

0

βn(τ)e−ω
2
n(t−τ) dτ . (7.3.48)

We see that we have in fact a Greens function with the exponential term. We interestingly
were able to find it with other arguments. So with our knowledge of βn(t) from above, the
complete solution is,

T (x, t) =
∞∑
n=1

{ˆ t

0

[
2

L

ˆ L

0

f(x, τ) sin
(nπ
L
x
)

dx

]
e−ω

2
n(t−τ) dτ

}
sin
(nπ
L
x
)
. (7.3.49)

In two dimensions this can still be solved similarly.
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7.4 Lecture 21: November 5, 2012

In review, last week we solved, by separation of variables over [0, L], with BC: F (x=0) = 0
and F (x=L) = 0

∂F

∂t
= α

∂2F

∂x2
, (7.4.1)

and
∂F

∂t
= α

∂2F

∂x2
+ f(x, t). (7.4.2)

by using the eigenfunctions of sin(λx). We can also solve this over an interval of [−L
2
, L

2
] to

reduce the symmetry in another way. Our BC; ∂F
∂x

∣∣
x=0

= 0 and F (x=L
2
) = 0. This solution

will be of the form, cos
(

2nπ
L
x
)
.

Example: Heat transport in spherical coordinates

Now we are interested in solving a parabolic differential equation in spherical coordinates.
For we have a metal ball in a tank with temperature at the surface of Ts

∂(T − Ts)
∂t

= α
1

r2

∂

∂r

(
r2∂(T − Ts)

∂r

)
(7.4.3)

Simplifying for our differential temperature: T̃ = T − Ts,

∂T̃

∂t
= α

1

r2

∂

∂r

(
r2∂T̃

∂r

)
(7.4.4)

we substitute for ω = rT or T = ω
r

and simplify our problem to

∂ω

∂t
= α

∂2ω

∂r2
(7.4.5)

Our boundary conditions are
(
∂T
∂r

)
r=0

= 0 and T̃ (r=R) = 0, with an initial condition of
T (t=0) = T0.

We begin solving the equation with separation of variables,

ω = ρ(r)θ(t) (7.4.6)

ρ
dθ

dt
= αθ

d2ρ

dr2
(7.4.7)

1

αθ

dθ

dt
=

1

ρ

d2ρ

dr2
= −λ2 (7.4.8)

Clearly the form of the solution for the time will be

θ = θ0e−αλ
2t. (7.4.9)
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Now for our spacial system,
d2ρ

dr2
+ λ2ρ = 0. (7.4.10)

Our spacial function will thus be expressed with,

ρ = C1 cos(λr) + C2 sin(λr), (7.4.11)

or
ρ

r
= C1

cos(λr)

r
+ C2

sin(λr)

r
. (7.4.12)

Here a new boundary condition is expressed by ∂(ρ/r)
∂r

∣∣∣
r=0

= 0. The solutions are,

∂(cos(λr)/r)

∂r
= −cos(λr)

r2
− λsin(λr)

r
(7.4.13)

∂(sin(λr)/r)

∂r
= −sin(λr)

r2
+ λ

cos(λr)

r
(7.4.14)

taking a limiting case for the first equation we see,

lim
r→0

[
−cos(λr)

r2
− λsin(λr)

r

]
= −∞− λ =∞ (7.4.15)

for the second equation, using L’Hospital’s rule

lim
r→0

[
λ

cos(λr)

r
− sin(λr)

r2

]
= lim

r→0

[
1

r2
(λr cos(λr)− sin(λr))

]
(7.4.16)

= lim
r→0

[
1

2r

(
λr cos(λr)− λ2r sin(λr)− λ cos(λr)

)]
(7.4.17)

= lim
r→0

[
1

2r

(
−λ2r sin(λr)

)]
(7.4.18)

= lim
r→0

[
1

2

(
−λ2 sin(λr)

)]
(7.4.19)

= 0 (7.4.20)

Special functions

sinx

x
= j0(x) (7.4.21)

which is the spherical Bessel function

cosx

x
= y0(x) (7.4.22)

which is the spherical Neumann function. These are generalized by,

jn(x) =

√
π

2x
Jn+1/2(x) (7.4.23)
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yn(x) =

√
π

2x
Yn+1/2(x) (7.4.24)

With our boundary conditions, we get simply

ρ = C2
sin(λr)

r
(7.4.25)

Thus our solution gives eigenvalues of λn = nπ
R

and is

ωn = Cn sin
(nπ
R
r
)

e−αλ
2t (7.4.26)

Now,

F0 =
∞∑
n=1

Cn
r

sin
(nπ
R
r
)

(7.4.27)

integrating and rearranging for the coefficients

Cn =

´ R
0
F0r sin

(
nπ
R
r
)

dr´ R
0

sin2
(
nπ
R
r
)

dr
(7.4.28)

=
2

R

ˆ R

0

F0r sin
(nπ
R
r
)

dr (7.4.29)

The integral simplifies,

ˆ R

0

F0r sin
(nπ
R
r
)

dr =
R2

m2π2
(sin(mπ)−mπ cos(mπ)) (7.4.30)

=
R2

m2π2
(−mπ cos(mπ)) (7.4.31)

Thus,

C =
r2

π
, for m = 1, (7.4.32)

C =
−r2

2π
, for m = 2, (7.4.33)

C =
r2

3π
, for m = 3. (7.4.34)

Thus, the left hand side is (−1)m+1 R2

mπ
and our solution is

T̃ =
2F0

π

R

r

∞∑
n=1

(−1)m+1

m
sin
(mπ
R
r
)

e−α(
mπ
R )

2
t (7.4.35)
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Example: Flow in a cylindrical pipe

We now turn to the more difficult situation of solving for cylindrical coordinates. This will
require the use of Bessel functions to solve the system in general. Our system is

∂vz
∂t

= ν
1

r

∂

∂r

(
r
∂vz
∂r

)
− 1

ρ

∂P

∂z
(7.4.36)

where ν = µ/ρ. We know that −1
ρ
∂P
∂z

= const.

1. Homogeneous Equation

Using our separation of variables,

vz = X(r)T (t) (7.4.37)

X
dT

dt
= ν

[
T

1

r

d

dr

(
r

dX

dr

)]
(7.4.38)

also,
1

T

dT

dt
=

ν

X

1

r

d

dr

(
r

dX

dr

)
= −α2 (7.4.39)

Solving for the time, we again get

T = T0e−α
2t (7.4.40)

In our spacial coordinates,
1

r

d

dr

(
r

dX

dr

)
+
α2

ν
X = 0 (7.4.41)

The Bessel equation for n = 0 is in fact a solution of this system,

X = C1 J0

(
a√
ν
r

)
+ C2 Y0

(
a√
ν
r

)
(7.4.42)

for our boundary conditions, we recognize that J0

(
a√
ν
r
)
→ finite, while Y0

(
a√
ν
r
)
→

infinite. Thus our solution simplifies to,

X = C1 J0

(
a√
ν
r

)
→ finite (7.4.43)

Our alpha is found from the roots of the Bessel function, or an = αn
√
ν . These are tabulated

and can also be accessed in Mathematica® or Matlab®. So we have our solution is of the
form

ρ(r) =
∞∑
n=1

Cn J0

(αn
R
r
)

e−
α2nν

R
t (7.4.44)
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2. Inhomogeneous Solution

Now we need to solve our steady state solution,

vz = v′z,∞ + v′z, (7.4.45)

which gives our large time result

v′z,∞(r) =
∞∑
n=1

Cn J0

(αn
R
r
)
. (7.4.46)

Then, for our pressure relation and our parabolic flow,

v′z,∞(r) = −R
2

4µ

dP

dz

(
1− r2

R2

)
(7.4.47)

=
∞∑
n=1

Cn J0

(αn
R
r
)

(7.4.48)

Since J0

(
αn
R
r
)

are orthogonal, we can integrate to get

Cm

ˆ R

0

[
J0

(αn
R
r
)]2

r dr = Cm
R2

2
[J0(αm) + J1(αm)] ,

= Cm
R2

2
J1(αm).

Rearranging,

Cm =
R2

4µ

dP

dz

2R2 J2(αm)

α2
m

2

R2

1

J1(αm)
,

=
R2

µ

dP

dz

J2(αm)

α2
m J1(αm)

. (7.4.49)

Thus, we can find a final for our equation with,

vz =
∞∑
n=1

R2

µ

dP

dz

J2(αm)

α2
m J1(αm)

J0

(αn
R
r
)[

1− e−
α2nν

R
t

]
.

or

vz =
R2

µ

dP

dz

∞∑
n=1

J2(αm)

α2
m J1(αm)

J0

(αn
R
r
)[

1− e−
α2nν

R
t

]
(7.4.50)
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UNIT 8

Chapter 17—Integral Transforms

8.1 Lecture 22: November 7, 2012

The general form of integral transforms ,ˆ b

a

K(p, x)f(x) dx = F̂ (p) (8.1.1)

A common transform is the Laplace transform.

F̂ (s) =

ˆ ∞
0

e−stf(t) dt (8.1.2)

The Fourier transform is

F̂ (k) =
1

(2π)1/2

ˆ ∞
0

e−ikxf(x) dx (8.1.3)

In the case of a Fourier transform of time, we get that we are working in the frequency
domain. For a spacial domain we work in the wavevector domain. A great benefit of a
Laplace transform is that we convert derivatives into algebraic equations. This allows us to
simplify some more difficult problems because the problems are easier to manipulate in these
different spaces.

Laplace transform

Say we have f(t) = eαt, ˆ ∞
0

e−stf(t) dt =

ˆ ∞
0

e−steαt dt (8.1.4)

=

ˆ ∞
0

e−(s−α)t dt

=
1

(s− α)

[
e−(s−α)t

∣∣∞
0

=
1

(s− α)
, for s > α (8.1.5)
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Now say that we transform the differential operator i.e. f(t) = df
dt

,ˆ ∞
0

e−stf(s) dt =

ˆ ∞
0

e−st
df

dt
dt (8.1.6)

=
[
e−stf

∣∣∞
0
−
ˆ ∞

0

f d(e−st)

= −f(0)−
ˆ ∞

0

fe−st d(−st)

= −f(0) + s

ˆ ∞
0

fe−st dt

= sF̂ (s)− f(0) (8.1.7)

This shows the power of the Laplace transform for solving initial value problems. The f(0)
corresponds to the initial condition and we have got rid of the derivative. Let’s say we have
f (n)(t), then in general

L
{
f (n)(t)

}
= snF̂ (s)− sn−1f(0)− · · · − sn−nf (n−1)(0) (8.1.8)

which is thus dependent on the initial conditions. A constant is transformed,
´∞

0
e−stf(t) dt,

to F̂ (s) = c
s
.

For a second order derivative,

L

{
d2f

dt2

}
= s2F̂ (s)− sf(0)− f ′(0) (8.1.9)

where f ′(0) =
(

df
dt

)
t=0

.

Example: Oscillator equation

The oscillator equation may be transformed using the Laplace transform.

m
d2x

dt2
+ ζ

dx

dt
+ kx = f(t) (8.1.10)

where the terms are the acceleration, friction, elastic and external forces, respectively. In
the case of a random external force we can have a Brownian Oscillation. So we are now
interested in a solution.

d2x

dt2
+ β

dx

dt
+ ω2

0 = λ(t) (8.1.11)

where β = ζ/m; ζ = 6πηa, ω2
0 = k/m, and λ(t) = f(t)/m. For solving for the Green function

we have
d2G

dt2
+ β

dG

dt
+ ω2

0G = δ(t) (8.1.12)

transforming the Dirac delta function,

L {δ(t)} =

ˆ ∞
0

e−st δ(t) dt

=
1

2
(8.1.13)
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Taking the transform of the other terms in our equation,

L

{
d2G

dt2

}
= s2Ĝ(s)− sG(0)−G′(0) (8.1.14)

L

{
dG

dt

}
= sĜ(s)−G(0) (8.1.15)

L {G(t)} = Ĝ(s) (8.1.16)

Let’s say that we have simple initial condition so the Ĝ(0) terms go away. Then substituting
into our differential equation for the Green function,

s2Ĝ(s) + βsĜ(s) + ω2
0Ĝ(s) =

1

2

Ĝ
(
s2 + βs+ ω2

0

)
=

1

2

Ĝ =
1

2 (s2 + βs+ ω2
0)

(8.1.17)

We now care about inverting the system into the real variables, which is a tricky process.
To invert,

f(t) =
1

2πi

˛ γ+i∞

γ−i∞
F̂ (s)e+st ds (8.1.18)

This requires the method of residues. There are also many tables of the (inverse) Laplace
transforms in books such as Korn and Korn. Also in Mathematica® you can use the command
LaplaceTransform[f(t),t,s] and InverseLaplaceTransform[F(s),s,t]. Returning to
our problem we find by inversion that,

L −1
{
Ĝ(s)

}
=

e−
βt
2

[
e

1
2
t
√
β2−4ω2

0 − e−
1
2
t
√
β2−4ω2

0

]
2
√
β2 − 4ω2

0

=
e−

βt
2 sin (ω1t)

2ω1

(8.1.19)

where ω1 =
√
ω2

0 −
β2

4
and we recall β = ζ/m. Thus we have found the Green function and

can solve our system by,

x(t) =

ˆ ∞
0

G(t− t′)f(t′) dt′ (8.1.20)

Example: System of chemical reactions

Laplace transforms may be used on systems of linear differential equations. It is not generally
usable for nonlinear equations. Say we have the reactions,

A
k1−→ B

k2−→ C
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So we have at t = 0 that NA = N , and NB = NC = 0. Our reaction scheme becomes,

dNA

dt
= −k1NA

dNB

dt
= k1NA − k2NB

dNC

dt
= k2NB

Now this makes it clear why we can only be using a first-order set of reactions, or else
we would be dealing with a system of non-linear equations and could not use the Laplace
transform. Each of the equations above can be used to get equations in time for each of the
components. Transforming these equations, we get,

sF̂A(s)−N = −k1F̂A(s)

sF̂B(s) = k1F̂A(s)− k2F̂B(s)

sF̂C(s) = k2F̂B(s)

Separating the terms and substituting we get the following system of independent equations,

F̂A(s) =
N

s+ k1

F̂B(s) =
k1N

(s+ k1) (s+ k2)

F̂C(s) =
k1k2N

s (s+ k1) (s+ k2)

Now we find from inverting that

NA(t) = Ne−k1t (8.1.21)

NB(t) =
k1N

k1 − k2

(
e−k2t − e−k1t

)
(8.1.22)

NC(t) =
N
[
k1

(
1− e−k2t

)
− k2

(
1− e−k1t

)]
k1 − k2

(8.1.23)

where the third equation follows because NA+NB+NC = N . These solutions may be plotted
easily to show the behavior of the system, where we observe A decaying, B increasing and
then decreasing, and C increasing to a steady quantity.

Example: Heat transfer

Partial differential equations application to heat transfer.

∂2T

∂x2
=

1

α

∂T

∂t
(8.1.24)
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with initial and boundary conditions of,

T (x, 0) = 0

T (0, t) = T0

T (∞, t)→ 0

On a practical note: this equation is not perfectly physical because of the heat far away
seems to propagate infinitely fast which is non-physical. Now let’s transform the time with
the Laplace transform.

L

{
∂T

∂t

}
= sT̂ − T (0)

L

{
∂2T

∂x2

}
=

∂2

∂x2
(L {T}) =

∂2T̂

∂x2

so we have an ordinary differential equation,

d2T̂

dx2
=
s

α
T̂ (8.1.25)

Also,

L {T0} =
T0

s

This gives
d2T̂

dx2
− s

α
T̂ = 0 (8.1.26)

where T̂ (x=0) = T0
s

. We will continue the solution next lecture.
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8.2 Lecture 23: November 12, 2012

Example: Diffusion Equation

As an example of Laplace transforms we will explore the solution of Fourier’s and Fick’s
Laws,

∂T

∂t
= α

∂2T

∂x2
(8.2.1)

∂C

∂t
= D∂

2C

∂x2
(8.2.2)

Now say we have heat next to a wall, our initial and boundary conditions are

T (x, 0) = 0

T (0, t) = T0

T (x→∞, t)→ finite

Transform with respect to time,

L

{
∂T

∂t

}
= sT̂ − T (t=0) (8.2.3)

L

{
∂2T

∂x2

}
=

∂2

∂x2
(L {T}) =

∂2T̂

∂x2
(8.2.4)

transforming the constant,

L {T0} =
T0

s
(8.2.5)

We now have everything to solve the problem. This simplifies to the modified Helmholtz
equation,

∂2T̂

∂x2
− s

α
T̂ = 0 (8.2.6)

T̂ (x, s) = C1(s)e
√

s
α
x + Cq(s)e

−
√

s
α
x (8.2.7)

from the first boundary condition we know that C1 ≡ 0. We simplify to

T̂ (x, s) = C2(s)e−
√

s
α
x (8.2.8)

from the other boundary condition,

T̂ (0, s) =
T0

s
(8.2.9)

T̂ (x, s) =
T0

s
e−
√

s
α
x (8.2.10)
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Now we need to invert back into time. Generally we will look at tables to find the answer.
We find that the inverse of the function is the complimentary error function.

L −1

{
e−
√

s
α
x

s

}
= erfc

(
x√
4αt

)
(8.2.11)

= 1− 2

π

ˆ x/
√

4αt

0

e−z
2

dz (8.2.12)

Our full solution,

T (x, t) = T0

(
1− 2

π

ˆ x/
√

4αt

0

e−z
2

dz

)
(8.2.13)

In the book there are examples with heat transfer with a constant heat flux or chemical
reaction with Robin boundary conditions.

Convolution Integral

Physical Examples

Some times you end up with the product of two transforms that need to be inverted. Re-
placing viscous fluid with Stokes Law.

βv → 6πηav (8.2.14)

We get for other cases that we must evaluate
ˆ τ

0

β(τ − t)v(t) dt (8.2.15)

Mathematical description

F̂ (s) =

ˆ ∞
0

e−stf(t) dt (8.2.16)

or in the book’s notation

Ĝ(s) =

ˆ ∞
0

e−stg(t) dt (8.2.17)

On a matter of notation, in the book integration is often written as
ˆ ∞

0

dt e−stf(t) =

ˆ ∞
0

e−stf(t) dt (8.2.18)

So we are inverting a convoluted system,

L −1
{
F̂ (s)Ĝ(s)

}
= r(t) (8.2.19)

F̂ (s)Ĝ(s) = F̂ (s)

ˆ ∞
0

e−sug(u) du (8.2.20)
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Putting F̂ (s) inside the system,

F̂ (s)Ĝ(s) =

ˆ ∞
0

e−suF̂ (s)g(u) du (8.2.21)

Proving an auxiliary theorem about the Laplace transform. We have translation

L
{

eatf(t)
}

= F̂ (s− a) (8.2.22)

This gives F̂ (s) which is shifted by a.

F̂ (s) = L {f(t)} (8.2.23)

Applying the definition of a Laplace transform,

L
{

eatf(t)
}

=

ˆ ∞
0

eate−stf(t) dt (8.2.24)

=

ˆ ∞
0

e(a−s)tf(t) dt (8.2.25)

= F̂ (s− a) (8.2.26)

Remember that s > a is a necessary condition for convergence of the integral.

g(t) =

{
0, 0 ≤ t < a

f(t− a), t ≥ a
. (8.2.27)

ˆ ∞
0

e−stg(t) dt =

ˆ ∞
a

e−stf(t− a) dt (8.2.28)

This can further be written as,

ˆ ∞
0

e−stg(t) dt = e−sa
ˆ ∞
a

e−s(t−a)f(t− a) d(t− a) (8.2.29)

= e−saF̂ (s) (8.2.30)

We may also write,

g(t) = H(t− a)f(t− a) (8.2.31)

Where the Heaviside function is given by

H(t− a) =

{
0, 0 ≤ t < a

1, t ≥ a
. (8.2.32)

and is found through integrating the Dirac delta function,

H(t) =

ˆ
δ(t) dt (8.2.33)
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or

H(t− a) =

ˆ
δ(t− a) dt (8.2.34)

from these relationships,

F̂ (s)Ĝ(s) =

ˆ ∞
0

e−suF̂ (s)g(u) du (8.2.35)

e−suF̂ (s) = e−su
ˆ ∞

0

e−stf(t) dt (8.2.36)

=

ˆ ∞
0

e−st H(t− u)f(t− u) dt (8.2.37)

Finally, we get that the product is,

F̂ (s)Ĝ(s) =

ˆ ∞
0

du

ˆ ∞
0

dt e−st H(t− u)f(t− u)g(u) (8.2.38)

or we may simplify

F̂ (s)Ĝ(s) =

ˆ ∞
0

du

ˆ ∞
u

dt e−stf(t− u)g(u) (8.2.39)

This is the form of the convolution. However, this is not sufficient for non-linear differential
equations. Say that we have f = g, then we may suppose fg = f 2. But we in fact have
f(t− u)g(u) = f(t− u)f(u) 6= f 2. Thus, it is not the same and therefore not helpful.

Note: Example memory dependent processes Markov processes do not have memory;
however many systems have memory.

Fourier Transform

Our Laplace transform that is usually
´∞

0
e−stf(t) dt, but may be

´∞
−∞ e−stf(t) dt which is a

double-sided Laplace Transform. Normally, we prefer in this case to use Fourier transform
because it is simply obtained by s = −iω. For the sum of the series

f(t) =
∞∑
−∞

Cneinωt (8.2.40)

and

Cn =
1

τ

ˆ τ/2

−τ/2
f(t)e−inω0t dt (8.2.41)

where ω0τ = 2π because we need a node on both boundaries. τ is the time interval of interest
and 1

τ
= ω0

2π
.

f(t) =
∞∑
−∞

[
ω0

2π

ˆ τ/2

−τ/2
f(t)e−inω0t dt

]
einω0t (8.2.42)
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The term in brackets is in fact the coefficients of the Fourier terms. This is a finite value. If
we have a large τ and a small ω0, we can approximate the solution as,

f(t) =
1

2π

∞∑
n=−∞

F (n∆ω)∆ω (8.2.43)

This is a Riemann sum evaluation and if we have ∆ω → ω0, we can express the integral with
a convolution,

F (n∆ω) =

ˆ τ/2

−τ/2
f(u)e−in∆ω(t−u) du (8.2.44)

Continuing our sum, we see an integral

f(t) =
1

2π

∞∑
n=−∞

F (n∆ω)∆ω (8.2.45)

=
1

2π

ˆ ∞
−∞

F dω (8.2.46)

=
1

2π

ˆ ∞
−∞

dω

ˆ ∞
−∞

du f(u)eiω(t−ω) (8.2.47)

This is the Fourier integral theorem.

C(ω) =
1

2π

ˆ ∞
−∞

du f(u)e−iωu (8.2.48)

f(t) =

ˆ ∞
−∞

C(ω)eiωt dω (8.2.49)

This is similar to an electrical engineering approach. The physicist approach likes to have
the 1/2π split by a square root. This is usually a little better as far as normalization goes.

To do the transform we are required that we have a function which has a continuous
derivative. In many cases it is still stable as long as the function is only piecewise continuous.
The Heaviside function is discontinuous, which is a more difficult. The Fourier Integral
Theorem is the continuous analogue of

f(t) =
∞∑

n=−∞

Cneinωt (8.2.50)

which in the limit is
´∞
−∞C(ω)eiωt dω.

Now, for the transform f(t)→ F̂ (ω),

F̂ (ω)
1√
2π

ˆ ∞
−∞

du f(u)e−iωu (8.2.51)

To do the inversion F̂ (ω)→ f(t).

f(t) =
1√
2π

ˆ ∞
−∞

dω F̂ (ω)eiωt (8.2.52)
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Example: Gaussian distribution

The form of the Gaussian distribution is

f(x) =
e−

x2

2σ2

(2πσ2)1/2

This is a useful distribution because it arrises from the central limit theorem. It is also
interesting because its Fourier transform is also a Gaussian distribution. With k as the
wavenumber

F̂ (k) =
1

2πσ

ˆ ∞
−∞

dx e−ikxe−
x2

2σ2 (8.2.53)

Since this is symmetric we can multiply the function by to and simply integrate over the
positive axis.

F̂ (k) =
1

πσ

ˆ ∞
0

dx e−ikxe−
x2

2σ2 (8.2.54)

=
1

2π
e−

σ2k2

2 (8.2.55)

Derivative transforms

Fourier transform is also able to convert derivatives into algebraic terms.

F
{
f (n)(t)

}
= (iω)nF̂ (ω) (8.2.56)

This inversion is simpler than the Laplace transform because we have a simpler integral.
From the original transform,

F̂ (ω) =
1√
2π

ˆ ∞
−∞

e−iωtf(t) dt , (8.2.57)

our inverse transform is

f(t) =
1√
2π

ˆ ∞
−∞

eiωtF̂ (ω) dω (8.2.58)

It is standard to have first and second order derivatives. So their transforms are

F{f ′(t)} = iωF̂ (ω) (8.2.59)

F{f ′′(t)} = −ω2F̂ (ω) (8.2.60)

Example: Infinite Insulated Rod

Looking at a variation of the earlier problem, we now have an infinite domain instead of
semi-infinite. Say we supply a spike of heat at x0. This instantaneous heat is done at t = 0.
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Thus we have T (x, 0) = T0 δ(x− x0) as our initial condition. Our boundary conditions are
such that T (x→±∞, t)→ 0.

∂T

∂t
= α

∂2T

∂x2
(8.2.61)

This may be extended to three-dimensional systems. Applying the Fourier transform with
respect to the spacial variable x. So,

F

{
∂2T

∂x2

}
= −k2T̂ (k, t) (8.2.62)

and

F

{
∂T

∂t

}
=
∂T̂

∂t
(8.2.63)

So our equation is now

dT̂

dt
= −αk2T̂ (8.2.64)

and the initial condition is

T̂ (k, 0) =
T0√
2π

ˆ ∞
−∞

e−ikx δ(x− x0) dx (8.2.65)

=
T0√
2π

e−ikx0 (8.2.66)

The solution is in exponential form,

T̂ (k, t) = T̂ (k, 0)e−αk
2t0 (8.2.67)

=
T0√
2π

e−ikx0e−αk
2t0 (8.2.68)

Inverting

T (x, t) =
1√
2π

ˆ ∞
−∞

eikxT̂ (k, t) dk (8.2.69)

=
T0√
2π

ˆ ∞
−∞

eik(x−x0)e−k
2αt dk (8.2.70)

=
T0√
2π

e−
(x−x0)

2

4αt (8.2.71)
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8.3 Lecture 24: November 14, 2012

Convolution Theorem

The convolution theorem tells us how we can take the following integrals,

f ∗ g =

ˆ ∞
−∞

f(u)g(x− u) du , (8.3.1a)

=

ˆ ∞
−∞

f(x− u)g(u) du . (8.3.1b)

So in a Fourier transform

F{f ∗ g} =
1√
2π

ˆ ∞
−∞

dx e−ikx

ˆ ∞
−∞

du f(u)g(x− u) (8.3.2)

=
1√
2π

ˆ ∞
−∞

du g(u)

ˆ ∞
−∞

dx e−ikxf(x− u)

Defining new variables, z = x − u or x = z + u, and gives e−ikx = e−ikze−iku. So, the
convolution product is

F{f ∗ g} =
1√
2π

ˆ ∞
−∞

du g(u)

ˆ ∞
−∞

dz e−ikze−ikuf(z)

=
1√
2π

ˆ ∞
−∞

du e−ikug(u)

ˆ ∞
−∞

dz e−ikzf(z)

=
1√
2π

ˆ ∞
−∞

du e−ikug(u)F̂ (k)

=
1√
2π

F̂ (k)

ˆ ∞
−∞

du e−ikug(u)

=
1√
2π

F̂ (k)Ĝ(k) (8.3.3)

This gives a non-shifted result, which is useful if you want to remove the offset in one of the
multiplying functions.

Example: Radial distribution function

g(r)− 1− h(r) (8.3.4)

The Onstein–Zerniki equation, is a special correlation function on the densities of molecules,
and is an integral equation. It is difficult to solve and is of the form

h(r) = C(r) +

ˆ ∞
0

h(r− r′)C(r′) dr′ (8.3.5)

For special cases inn the Fourier space, we can simplify greatly to

Ĥ(k) = Ĉ(k) + Ĥ(k)Ĉ(k) (8.3.6)
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The general expression of a Fourier image of a function is,

F̂ (k) =
1

(2π)3/2

ˆ ∞
−∞

f(r)e−ik·r dr (8.3.7)

This can be written by components in Cartesian space

F̂ (k) =
1

(2π)3/2

˚ ∞

−∞
f(x, y, x)e−i(kxx+kyy+kzz) dx dy dz (8.3.8)

=
1

(2π)3/2

˚ ∞

−∞
f(x, y, x)e−ikxxe−ikyye−ikzz dx dy dz (8.3.9)

This is powerful because it allows one-dimensional solutions to be potentially composed into
three dimensions.

Transform of differential operators

F{f ′′(x)} = −k2F̂ (k) (8.3.10)

The multi-dimensional equivalent, the Laplace operator, is,

∇2f(r) = −4π δ(r) (8.3.11)

and can be f(r) = 1
r
. Now

1

(2π)3/2

∞̊

−∞

∇2f(r)e−ik·r dr =
−4π

(2π)3/2

∞̊

−∞

δ(r)e−ik·r dr (8.3.12)

The Laplacian is

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(8.3.13)

This can break up the integrals,

1

(2π)3/2

∞̊

−∞

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
e−ikxxe−ikyye−ikzz dx dy dz

=
1

(2π)3/2

∞̊

−∞

(
∂2f

∂x2

)
e−ikxxe−ikyye−ikzz dx dy dz

+
1

(2π)3/2

∞̊

−∞

(
∂2f

∂y2

)
e−ikxxe−ikyye−ikzz dx dy dz

+
1

(2π)3/2

∞̊

−∞

(
∂2f

∂z2

)
e−ikxxe−ikyye−ikzz dx dy dz
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Or simplifying for each term

1

(2π)3/2

∞̊

−∞

(
∂2f

∂x2

)
e−ikxxe−ikyye−ikzz dx dy dz =

(ikx)
2

(2π)

∞̊

−∞

fe−ikxxe−ikyye−ikzz dx dy dz

(8.3.14)

this shows that we can simplify to a one dimensional case. Since, (ik)2 = −k2, we have,

−k2
x

(2π)

∞̊

−∞

δ(r)e−ik·r dr +
−k2

y

(2π)

∞̊

−∞

δ(r)e−ik·r dr +
−k2

z

(2π)

∞̊

−∞

δ(r)e−ik·r dr (8.3.15)

=
−
(
k2
x + k2

y + k2
z

)
(2π)

∞̊

−∞

δ(r)e−ikxxe−ikyye−ikzz dx dy dz (8.3.16)

distributing out the square root of 2π, we get

= −k2F̂ (k), where k2 =
(
k2
x + k2

y + k2
z

)
(8.3.17)

Thus,
F
{
∇2f

}
= −k2F̂ (k) (8.3.18)

This is a true operation in general. Now we return to our example, where we are doing the
Fourier transform of the Greens function for the Laplace operator. Note that

1√
2π

ˆ ∞
−∞

δ(x)e−ikx dx =
1√
2π

e−ik0 (8.3.19)

=
1√
2π

(8.3.20)

also,
δ(r) = δ(x) δ(y) δ(z) (8.3.21)

So,

−4π

(2π)3/2

∞̊

−∞

δ(x)e−ikxx δ(y)e−ikyy δ(z)e−ikzz dx dy dz =
4π

(2π)2/3
= −

√
2

π
(8.3.22)

k2F̂ (k) =

√
2

π
(8.3.23)

F̂ (k) =
1

k2

√
2

π
(8.3.24)

and finally,

F

{
1

r

}
=

√
2

π

1

k2
(8.3.25)
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Spherical Coordinates

If the system is symmetric we can do many simplifications from the beginning. This lets
us define Fourier transforms that correspond to certain symmetries and simply use that to
solve problems. Let’s look at spherical coordinates. Defining

V̂ (k) =
1

(2π)2/3

∞̊

−∞

V̂ V (|r|)e−ik·r dr (8.3.26)

Now in spherical coordinates,

dr = r2 dr sin(θ) dθ dφ (8.3.27)

and
k · r = kr cos(θ) (8.3.28)

This works in our invariant system. Say we define our k such that it is in the z-axis; then
we will simply have to deal with the polar angle of our system. Now,

V̂ (k) =
1

(2π)2/3

∞̂

0

πˆ

0

2πˆ

0

V (|r|)e−ikr cos(θ)r2 dr sin(θ) dθ dφ (8.3.29)

Phi can easily be integrated out of the system. So, we simplify to a two dimensional integral

V̂ (k) =
2π

(2π)2/3

∞̂

0

πˆ

0

V (|r|)e−ikr cos(θ) d cos(θ) r2 dr (8.3.30)

to integrate the cos(θ) term observe

1√
2π

e−ikr cos(θ) d cos(θ) =
1√
2π

2 sin(kr)

kr
=

√
2

π

sin(kr)

kr
(8.3.31)

This is the kernel of a function in spherical coordinates. So,

V̂ (k) =

√
2

π

∞̂

0

V (r)
sin(kr)

kr
r2 dr (8.3.32)

This simplifies us to purely radial systems. Now notice, sinx
x

= j0(x) is the spherical Bessel

function or in our case, sin(kr)
kr

= j0(kr). So we can rewrite our integral,

V̂ (k) =

√
2

π

∞̂

0

V (r) j0(kr)r2 dr (8.3.33)

We could recall in the beginning that in spherical coordinates

∇2 =
1

r2

d

dr

(
r2 d

dr

)
(8.3.34)
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with C(r),

∇2C(r) =
1

r2

d

dr

(
r2 dC(r)

dr

)
(8.3.35)

so if we take the integral we notice that the r2 terms can cancel.√
2

π

∞̂

0

1

r2

d

dr

(
r2 dC(r)

dr

)
j0(kr)r2 dr =

√
2

π

∞̂

0

d

dr

(
dC(r)

dr

)
j0(kr) dr (8.3.36)

=

√
2

π

∞̂

0

j0(kr) d

(
r2 dC

dr

)
(8.3.37)

=

√
2

π

[
j0(kr)r2 dC

dr

]∞
0

−
√

2

π

ˆ ∞
0

r2 dC

dr
d (j0(kr))

(8.3.38)

= −
√

2

π

ˆ ∞
0

r2 dC

dr
d (j0(kr)) (8.3.39)

This can be further solved by integrating properties of the Bessel functions.

Polar Coordinates

Recall now that the radial vector is restricted to a plane,

V̂ (k) =
1

2π

∞̈

−∞

V (r)e−ik·r dx dy (8.3.40)

=
1

2π

ˆ ∞
0

ˆ 2π

0

V (r)e−ikr cos(θ) dθ r dr (8.3.41)

=
1

2π

ˆ ∞
0

V (r)

[ˆ 2π

0

e−ikr cos(θ) dθ

]
r dr (8.3.42)

We notice that
´ 2π

0
e−ikr cos(θ) dθ = J0(kr), and

V̂ (k) =
1

2π

ˆ ∞
0

V (r) J0(kr)r dr (8.3.43)

Parsifal Theorem

The Parsifal theorem (or Parsifal Relation) is often useful in quantum mechanics. It states
that the product of two product of the complex conjugate function (f ∗(t)), we have

ˆ ∞
−∞

f ∗(t)f(t) dt =

ˆ ∞
−∞
|f(t)|2 dt (8.3.44)
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Writing the transform, of the function is

f(t) =
1√
2π

ˆ ∞
−∞

F̂ (ω)eiωt dω (8.3.45)

and of the complex conjugate is

f ∗(t) =
1√
2π

ˆ ∞
−∞

F̂ ∗(ω)e−iωt dω (8.3.46)

so

f ∗(t)f(t) =
1

2π

ˆ ∞
−∞

dω F̂ ∗(ω)e−iωt

ˆ ∞
−∞

dω′ F̂ (ω′)eiω′t (8.3.47)

Integrating

ˆ ∞
−∞

dt f ∗(t)f(t) =

ˆ ∞
−∞

dt
1√
2π

ˆ ∞
−∞

dω F̂ ∗(ω)e−iωt 1√
2π

ˆ ∞
−∞

dω′ F̂ (ω′)eiω′t (8.3.48)

=

ˆ ∞
−∞

dω F̂ ∗(ω)

ˆ ∞
−∞

dω′ F̂ (ω′)
1

2π

ˆ ∞
−∞

dt ei(ω′−ω)t (8.3.49)

The integral at the end is simply a delta function or δ(ω′ − ω) = 1
2π

´∞
−∞ dt ei(ω′−ω)t and

=

ˆ ∞
−∞

dω

ˆ ∞
−∞

dω′ F̂ ∗(ω)F̂ (ω′) δ(ω′ − ω) (8.3.50)

=

ˆ ∞
−∞

dω F̂ ∗(ω)F̂ (ω) (8.3.51)

=

ˆ ∞
−∞

∣∣∣F̂ (ω)
∣∣∣2 dω (8.3.52)

Will do application example next time.
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8.4 Lecture 25: November 19, 2012

Momentum Representation
ˆ

Ψ∗(x)Ψ(x) dx =

ˆ
Ψ2(x) dx (8.4.1)

This is over [x, x+ dx]

1. Normalization
ˆ

Ψ∗(x)Ψ(x) dx = 1 (8.4.2)

ˆ
Ψ∗(x)xΨ(x) dx = 〈x〉 (8.4.3)

ˆ
Ψ∗(x)AΨ(x) dx = 〈A〉 (8.4.4)

2. Momentum

Over [p, p+ dp], we have g(p)

g∗(p)g(p) dp (8.4.5)

ˆ
g∗(p)g(p) dp = 1 (8.4.6)

3. Expected value of the momentum

(Note: ~ = h
2π

)

〈p〉 =

ˆ
g∗(p) p g(p) dp (8.4.7)

g(p) =
1√
2π~

ˆ ∞
−∞

Ψ(x)e−
ipx
~ dx (8.4.8)

g∗(p) =
1√
2π~

ˆ ∞
−∞

Ψ∗(x)e+ ipx
~ dx (8.4.9)

In three dimensions,

g∗(p) =
1

(2π~)3/2

∞̊

−∞

Ψ∗(r)e+ ir·p
~ dr (8.4.10)

Now we ask

〈p〉 =

ˆ ∞
−∞

g∗(p) p g(p) dp
?
=

ˆ ∞
−∞

Ψ∗
~
i

d

dx
(Ψ(x)) dx (8.4.11)
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So, ˆ ∞
−∞

g∗(p) p g(p) dp =
1

2π~

∞̊

−∞

e−
ip(x−x′)

~ Ψ∗(x)Ψ(x) dx dx′ . (8.4.12)

Now,

pe−
ip(x−x′)

~ =
d

dx

(
−~

i
e−

ip(x−x′)
~

)
(8.4.13)

〈p〉 =

∞̈

−∞

[
− 1

2π~
e−

ip(x−x′)
~ dp

]
Ψ∗(x′)

~
i

d

dx
(Ψ(x)) dx dx′ (8.4.14)

We recognize the term in brackets is the Dirac delta function.

〈p〉 =

∞̈

−∞

δ(x− x′)Ψ∗(x′)~
i

d

dx
(Ψ(x)) dx dx′ (8.4.15)

=

ˆ ∞
−∞

Ψ∗(x)
~
i

d

dx
(Ψ(x)) dx (8.4.16)

= eipx (8.4.17)

Example: Pulse Propagation

∂2y

∂x2
=

1

ν2

∂2y

∂t2
(8.4.18)

with initial and boundary conditions,

y(t=0, x) = f(x)

and
f ′(x) = 0

Using the Fourier transform,

ˆ ∞
−∞

∂2y

∂x2
e−ikx dx =

1

ν2

ˆ ∞
−∞

∂2y

∂t2
e−ikx dx (8.4.19)

which gives the ordinary differential equation,

(ik)2ŷ(k, t) =
1

ν2

d2ŷ

dt2
(8.4.20)

and is rearranged into the Helmholtz equation,

d2ŷ

dt2
+ ν2k2ŷ(k, t) = 0. (8.4.21)

The solution is,
ŷ(k, t) = C(k)e±ikνt (8.4.22)
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From the initial condition we get,

F̂ (k) =
1√
2π

ˆ ∞
−∞

f(x)e−ikx dx (8.4.23)

and we find C(k) = F̂ (k) or
ŷ(k, t) = F̂ (k)e±ikνt (8.4.24)

Finally retransforming into,

y(x, t) =
1√
2π

ˆ ∞
−∞

ŷ(k, t)eikx dk (8.4.25)

=
1√
2π

ˆ ∞
−∞

dk F̂ (k)e±ikνteikx (8.4.26)

=
1√
2π

ˆ ∞
−∞

dk F̂ (k)ei(x∓νt)k (8.4.27)

=
1√
2π

ˆ ∞
−∞

dk F̂ (k)eizk (8.4.28)

y(x, t) = f(x∓ vt) (8.4.29)

Example: Quantum Oscillator

Finding Greens function to the equation

d2x

dt2
+ β

dx

dt
+ ω2

0x = f(x) (8.4.30)

To do so we will have to solve,

d2G

dt2
+ β

dG

dt
+ ω2

0G = δ(t) (8.4.31)

with a Fourier transform in time. The individual components become,

F

{
d2G

dt2

}
= −ω2Ĝ (8.4.32)

F

{
dG

dt

}
= iωĜ (8.4.33)

F{G} = Ĝ (8.4.34)

F{δ(t)} =
1√
2π

(8.4.35)

Substituting into the original equation,

−ω2Ĝ− iωβĜ+ ω2
0Ĝ =

1√
2π

(8.4.36)
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Ĝ =
1√

2π (−ω2 − iωβ + ω2
0)

(8.4.37)

To find the roots we substitute x = iω,

−ω2 − iωβ + ω2
0 = −x2 − βx+ ω2

0 = 0 (8.4.38)

x1 =
1

2

(
β − 2i

√
ω2 − β2/4

)
, (8.4.39a)

x2 =
1

2

(
β + 2i

√
ω2 − β2/4

)
; (8.4.39b)

x1 = −z1, (8.4.40a)

x2 = −z2. (8.4.40b)

The Greens function is now,

Ĝ =
1√

2π (z1 + iω) (z2 + iω)

=
1√
2π

1

z2 − z1

(
1

z1 + iω
− 1

z2 + iω

)
(8.4.41)

Transforming back to normal space

G =
ez1t

z2 − z1

θ(t)− ez2t

z2 − z1

θ(t) (8.4.42)

G =
e−βt/2

ω1

sin(ω1t)θ(t) (8.4.43)

where ω1 =
√
ω2

0 − β2/4 . Thus, our solution goes to

d2x

dt2
+ β

dx

dt
+ ω2

0x = f(x) (8.4.44)

is

x(t) =

ˆ
G(t− t′)f(t′) dt′ (8.4.45)

where G(t) is given above.
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Example: Total solution of the diffusion equation

In heat, mass (diffusion), and momentum (viscous) transport we get the equation,

∂F

∂t
= a

∂2F

∂x2
(8.4.46)

This equation has a fundamental solution, which is similar to the Green function. We will
now derive it in a fundamental way. We will use a Laplace transform in time and a Fourier
transform in space. Transforming with Laplace

L {F} = F̃ (8.4.47)

L

{
∂F

∂t

}
= sF̃ − F0 (8.4.48)

L

{
∂2F

∂x2

}
=
∂2F̃

∂x2
(8.4.49)

We denote,

F{F} = F̂ (8.4.50)

F
{
F̃
}

= ˆ̃F

F

{
∂2F

∂x2

}
= (ik)2F̂

F

{
∂2F

∂x2

}
= −k2F̂ (8.4.51)

So we can transform our full equation to,

s ˆ̃F − F0 = −ak2 ˆ̃F (8.4.52)(
s+ ak2

) ˆ̃F = F0

ˆ̃F =
F0

(s+ ak2)
(8.4.53)

We have ˆ̃F = ˆ̃F (s, k)

L −1
{

ˆ̃F
}

= F̂ = F0e−k
2at (8.4.54)

F−1
{
F0e−k

2at
}

=
F0√
2at

e−
x2

4at (8.4.55)

or our solution is,

F (x, t) =
F0√
2at

e−
x2

4at (8.4.56)

The mean-square displacement of the function is

〈
x2
〉

=

´∞
−∞ x

2 1√
2at

e−
x2

4at dx´∞
−∞

1√
2at

e−
x2

4at dx
(8.4.57)
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which simplifies to, 〈
x2
〉

= 2at (8.4.58)
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UNIT 9

Chapter 20—Calculus of Variations

9.1 Lecture 26: November 26, 2012

Definitions

functionals : Consider a function as a rule; e.g. y = x or y = x2. Now a functional is where
we have a number associated with a function; much like a function of functions. e.g. f(x)→
number.

I =

ˆ 1

0

f(x) dx

where we could have f(x) = x or y = x2 or y = ex.
One of the most important things in calculus is finding of minima and maxima. For

mechanical equilibrium (or equilibrium in general) means that the sum of all forces is zero.
i.e. ∑

i

Fi = 0 (9.1.1)

in a potential field we have Fi =∇ui, and

∇
∑
i

ui = 0 (9.1.2)

Minimizing a system also plays into thermodynamics. Entropy is the most general function
useful. Gibbs (Josiah Willard Gibbs) showed that the system may be expressed by other
variables and used for showing the minima of our system. Say we have our internal energy
U(S,N, V ),

dU = T dS − p dV + µ dN (9.1.3)

or from calculus we can show the differential may be expressed as,

dU =
∂U

∂S
dS +

∂U

∂V
dV +

∂U

∂N
dN (9.1.4)

0 =

(
∂U

∂S

)
V,N

= T (9.1.5)
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For the Helmholtz free energy , we want a function which is simply a function of measurable
variables, i.e. A(N, V, T ). In the Gibbs free energy , we have a function, G(N, p, T ) and for
the enthalpy we have a function, H(S, p,N). From Onsager, φ. Now we can have a system
where A(N(z), V, T ). This becomes a variational problem because we want to minimize the
Helmholtz free energy based on the function of the position of the atoms in the system. Now
one special careful consideration must be made; for using a variational expression we must
assume the system is reversible or conservative.

The Euler Equation

Another example of variational calculus is the demonstration of the shortest distance between
two points. It may be shown that the shortest distance in a Cartesian plane is in fact a
straight line. So, say we define a differential distance,

ds2 = dx2 + dy2 (9.1.6)

or,

ds2 =

(
1 +

(
dy

dx

)2
)

dx (9.1.7)

ds =

√
1 +

(
dy

dx

)2

dx (9.1.8)

Then our straight line is found by minimizing,

L =

ˆ b

a

√
1 +

(
dy

dx

)2

dx (9.1.9)

This is the Euler–Lagrange equation. In a more general form,

I =

ˆ b

a

F (x, y(x), y′(x)) dx (9.1.10)

and we care about the extrema: either Imin or Imax. To show the cases of minima, maxima
and inflection points, we need to use second derivatives. In the calculus of variations this
may be done by the “second variation”. We will not go into this in this course because it is
fairly involved. So returning to the above equation, I is a functional of y(x) and we usually
care about a minimization problem. So say we have,

Y (x, ε) = y(x) + εη(x) (9.1.11)

where we also restrict η(a) = η(b) = 0. Now we must have that the functional is at least
second-order partial differentiable. So,

F = F [x, Y (x, ε), Y ′(x, ε)] (9.1.12)
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Let’s use this for the integral,

I =

ˆ b

a

F [x, Y (x, ε), Y ′(x, ε)] dx (9.1.13)

If y(x) is in fact tending to an extremum then I(ε)→ Iext as ε→ 0. Or we have

dI

dε

∣∣∣∣
ε=0

= 0 (9.1.14)

dI

dε
=

ˆ b

a

(
∂F

∂Y

∂Y

∂ε
+
∂F

∂Y ′
∂Y ′

∂ε

)
dx (9.1.15)

Now,

∂Y

∂ε
= η(x) (9.1.16)

∂Y ′

∂ε
=

∂

∂ε
(y′(x) + εη′(x)) = η′(x) (9.1.17)

dI

dε
=

ˆ b

a

[
∂F

∂y
η(x) +

∂F

∂y′
η′(x)

]
dx (9.1.18)

as our ε→ 0. Y (x, ε)→ y(x), and Y ′(x, ε)→ y′(x) and ∂F
∂Y
→ ∂F

∂y
and ∂F

∂Y ′
→ ∂F

∂y′
.

ˆ b

a

[
∂F

∂y
η(x) +

∂F

∂y′
η′(x)

]
dx = 0 (9.1.19)

since η(a)η(b)0 or,

ˆ b

a

∂F

∂y

∂η

∂x
dx =

ˆ b

a

∂F

∂y′
dη

dη

dx
dx (9.1.20)

=

[
∂f

∂y′

]b
a

−
ˆ b

a

η(x) d

(
∂F

∂y′

)
(9.1.21)

from the side conditions we have the left portion is simply zero.

= −
ˆ b

a

η(x)
∂

∂x

(
∂F

∂y′

)
dx (9.1.22)

ˆ b

a

(
∂F

∂y
η(x) +

∂F

∂y′
∂η

∂x

)
dx =

ˆ b

a

(
∂F

∂y
η(x)− d

dx

(
∂F

∂y′

)
η(x)

)
dx (9.1.23)

=

ˆ b

a

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
η(x) dx (9.1.24)

which gives the Euler equation,

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (9.1.25)
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Example 1 in the book is the shortest distance between two points in a plane. Example 2 in
the book is on the great circle route, or the shortest line over a sphere; this is the geodesic
line. Say our function F (y(x), y′(x)) but not on x explicitly. In this case,

d

dx

(
y′
∂F

∂y′

)
= y′

d

dx

(
∂F

∂y′

)
+ y′′

∂F

∂y′
(9.1.26)

from the Euler equation, we have d
dx

(
∂F
∂y′

)
= ∂F

∂y
. Using this,

d

dx

(
y′
∂F

∂y′

)
= y′

d

dx

(
∂F

∂y′

)
+ y′′

∂F

∂y′
(9.1.27)

=
d

dx

(
∂F

∂y′

)
dy

dx
+
∂F

∂y′
dy′

dx
(9.1.28)

=
dF

dx
(9.1.29)

This gives that,

y′
∂F

∂y′
− F = const = c (9.1.30)

The above equation is the important one for finding shapes of surfaces.

Example: Brachistrone Problem

Bernoulli (Jacob Bernoulli) asked the following question: say we have two points that are
connected by a wire. What is the trajectory that gives the fastest connection? This problem
is known as the Bernoulli brachistrone. Say we start at a; we would have that

mv2

2
= mgy (9.1.31)

or
v2

2
= gy (9.1.32)

and
v =

√
2gy (9.1.33)

The time,

τ =

ˆ b

a

1

v
ds (9.1.34)

ds2 = dx2 + dy2

ds

v
=

(1 + (y′)2)√
2gy

dx (9.1.35)

So we are looking for a minimum of,

τ =

ˆ b

a

(1 + (y′)2)√
2gy

dx (9.1.36)
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From above,

y′
∂F

∂y′
− F = const = c (9.1.37)

∂F

∂y′
=

∂

∂y′

(
(1 + (y′)2)√

2gy

)
=

y′

[2gy (1 + (y′)2)]1/2
(9.1.38)

y′
∂F

∂y′
=

(y′)2

[2gy (1 + (y′)2)]1/2
(9.1.39)

Subtracting,
y′ − (1− (y′)2)

[2gy (1 + (y′)2)]1/2
= C (9.1.40)

−1

[2gy (1 + (y′)2)]1/2
= C1 (9.1.41)

y(1 + (y′)2) =
1

2gC2
1

= C2 (9.1.42)

1 +

(
dy

dx

)2

=
C

y
(9.1.43)

dy

dx
=

(
C − y
y

)1/2

(9.1.44)

This gives an integrable equation, (
y

C − y

)1/2

dy = dx (9.1.45)

with a solution of,

x =

√
C

y
− 1

y +
C
√
y arctan

(√
y
c−y

)
√
c− y

 (9.1.46)

y =
C

2
(1− cos(θ)) (9.1.47)

=
C

2
(θ − sin(θ)) + C2 (9.1.48)
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9.2 Lecture 27: November 28, 2012

Example: Classical Mechanics

Lagrange was one of the original formulators of the calculus of variations. For

∇u = 0 (9.2.1)

we have equilibrium.
∂u

∂x
=
∂u

∂y
=
∂u

∂z
= 0 (9.2.2)

Hamilton’s formulation of the principle of least action.

I =

ˆ t2

t1

L(q, q′, t) dt (9.2.3)

The action I is found from the path that gives a minimal value. The Euler–Lagrange equation
is,

∂L

∂q
− d

dt

(
∂L

∂q′

)
= 0 (9.2.4)

∂L

∂qi
− d

dt

(
∂L

∂q′i

)
= 0 (9.2.5)

For L = L(q1, q2, . . . , qs; q
′
1, q
′
2, . . . , q

′
s; t),

L1(q, q′, t) = L(q, q′, t) +
df(q, t)

dt
(9.2.6)

I1 =

ˆ t2

t1

L1(q, q′, t) dt (9.2.7)

=

ˆ t2

t1

L(q, q′, t) dt+

ˆ t2

t1

df(q, t)

dt
dt (9.2.8)

=

ˆ t2

t1

L(q, q′, t) dt+ f(t2)− f(t1) (9.2.9)

The Lagrangian is
L = K − V (9.2.10)

and the integral over it is the action. The Hamiltonian is

Etot = K + V (9.2.11)

In a real system, qi can be x, y, z, the kinetic energy is K = m
2

(
x′2 + y′2 + z′2

)
, and

V = V (x, y, z).
∂L

∂x
− d

dt

(
∂L

∂x′

)
= 0 (9.2.12)
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or,
∂L

∂x
=

d

dt

(
∂L

∂x′

)
(9.2.13)

L = K − V =
m

2

(
x′

2
+ y′

2
+ z′

2
)
− V (x, y, z) (9.2.14)

Substituting into the Euler–Lagrange equation (9.2.12).

∂L

∂x
= −∂V

∂x
= Fx (9.2.15)

∂L

∂x′
=
m

2
2x′ = mx′ (9.2.16)

d

dt

(
∂L

∂x′

)
=

d(mx′)

dt
(9.2.17)

=
dFx
dt

(9.2.18)

= m
dvx
dt

(9.2.19)

m
dvx
dt

= −∂V
∂x

= Fx. (9.2.20)

Example: Double pendulum

Find the Lagrange function for the case that we have a pendulum hanging from the ceiling
with φ1 angle from the ceiling and a mass, m1, at the end. There it is attached to another
pendulum of angle φ2 from the vertical and a mass, m2 hanging from the end. So,

• m1: K1 = 1
2
m1l

2
1ϕ

2
1

• m2: x2 = l1 sin(ϕ1) + l2 sin(ϕ2)

y2 = l1 cos(ϕ1) + l2 cos(ϕ2)

K2 =
m2

2

(
x′

2
+ y′

2
)

=
m2

2

[
l21ϕ

2
1 + l22ϕ

2
2 + 2l1l2 cos(ϕ1 − ϕ2)ϕ′1ϕ

′
2

]
V2 = −m2gC1 cos(ϕ1)−m1gl2 cos(ϕ2) (9.2.21)

L =
m1 +m2

2
l21ϕ

2
1+
m2

2
l22ϕ
′
2

2
+m2l1l2ϕ

′
1

2
ϕ′2

2
cos(ϕ1 − ϕ2)+(m1 +m2) gl1 cos(ϕ1)+m2l2 cos(ϕ2)

(9.2.22)
For another system of a single oscillator,

L =

(
m1 +m2

2

)
x′

2
+
m2

2

(
l2ϕ′

2
+ 2lx′ϕ′ cos(ϕ)

)
+m2gl cos(ϕ) (9.2.23)
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We apply the Euler–Lagrange equation,

∂L

∂qi
− d

dt

(
∂L

∂qi′

)
= 0, because qi → x1ϕ (9.2.24)

∂L

∂x
− d

dt

(
∂L

∂x′

)
= 0 (9.2.25)

∂L

∂ϕ
− d

dt

(
∂L

∂ϕ′

)
= 0 (9.2.26)

∂L

∂x
= 0 (9.2.27)

∂L

∂x′
= (m1 +m2)x′ +

m2

2
2lϕ′ cos(ϕ) (9.2.28)

d

dt

(
∂L

∂x′

)
= (m1 +m2)

d2x

dt2
+m2l

d2ϕ

dt2
−m2l

(
dϕ

dt

)2

sin(ϕ) = 0 (9.2.29)

∂L

∂ϕ
=
−2m2

2
2lx′ sin(ϕ)−m2gl sin(ϕ) (9.2.30)

∂L

∂ϕ′
= m2lϕ

′ +m2lx
′ cos(ϕ) (9.2.31)

d

dt

(
∂L

∂x′

)
= m2l

d2ϕ

dt2
+m2l cos(ϕ)

d2x

dt2
−m2l

dx

dt
sin(ϕ)

dϕ

dt
(9.2.32)

Integrals of Motion—Conservation of Energy

L = L(q, q′, t) (9.2.33)

in steady state,
L = L(q, q′) (9.2.34)

Then,
dL

dt
=
∑
i

∂L

∂qi
q′i +

∑
i

∂L

∂q′i
q′′i (9.2.35)

∂L

∂qi
=

d

dt

(
∂L

∂q′i

)
(9.2.36)

=
∑
i

q′i
d

dt

(
∂L

∂q′i

)
+
∑
i

∂L

∂q′
q′′ =

∑
i

d ∂L
∂q′
q′

dt
=

dL

dt
(9.2.37)

d

dt

(∑ ∂L

∂q′
q′ − L

)
= 0 (9.2.38)

148



9.2. Lecture 27: November 28, 2012 Methods of Analysis in ChNE

E =
∑ ∂L

∂q′
q′ − L = constant with respect to time (9.2.39)

L = K − V (9.2.40)

K =
∑
k,l

γklq
′
kq
′
l (9.2.41)

∑
i

q′i
∂L

∂q′
=

∂

∂q′i

(∑
γklq

′
kq
′
l

)
=
∂q′k
∂q′i

= δki = δik (9.2.42)

∑ ∂

∂q′i

(∑
k

γklq
′
kq
′
l +
∑
l

γklq
′
kq
′
l

)
q′i =

∑
i

(∑
l

γklq
′
l +
∑
k

γklq
′
k

)
q′i (9.2.43)

=
∑
i

(∑
l

γilq
′
lq
′
i +
∑
l

γilq
′
iq
′
l

)
(9.2.44)

= 2K (9.2.45)
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9.3 Lecture 28: December 3, 2012

The Variation
1.

df(x)

dx
= 0 (9.3.1)

for x = x∗ is similar to
δI

δy
= 0 (9.3.2)

for y = yext. We have

I =

ˆ
F (y, y′, x) dx (9.3.3)

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (9.3.4)

These become important for applications in density distributions, shapes of capillary surfaces,
equations of motion, and the wave function in quantum mechanics.

Example: Low density gas

Assuming no viscous stress, dilute gaseous solution, we have a symmetric object flying
through the air. The pressure

p = 2ρv2 sin2(θ) (9.3.5)

the total drag force on the surface is the integral of the pressure over the surface. F = pA
or in general F =

˜
p dA. So from a differential ring, we get

ˆ F (w)

F (0)

dF = 2ρv2

ˆ w

0

sin3(θ)

[
2πy

(
1 + y′

2
)1/2

]
dx

F =

ˆ w

0

4πρv2 sin3(θ)

[
2πy

(
1 + y′

2
)1/2

]
dx (9.3.6)

so sin(θ) ∼ yx√
1+y2x

for yx = dy
dx

and for small yx
yx√
1+y2x

≈ yx. This excludes the zone of the

tip for the approximation.

F = 4πρv2

ˆ w

0

y3
xy dx (9.3.7)

setting G = y3
xy

∂G

∂y
− d

dx

(
∂G

∂yx

)
= 0 (9.3.8)

Now G(y, yx), so

∂G

∂y
= y3

x (9.3.9)

∂G

∂yx
= y

∂y3
x

∂yx
= 3yy2

x (9.3.10)
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and substituting
y3
x + 3yyxyxx = 0 (9.3.11)

y3
xy = C3

1(
dy

dx

)3

y = C3
1

dy

dx
=

C1

3
√
y

(9.3.12)

Integrating,
y1/3 dy = C1 dx

4

3

ˆ
dy4/3 = C1

ˆ
dx

y4/3 = C1x

y = (C1x)3/4 . (9.3.13)

which gives the solution over the long domain. This allows for minimizing drag.
Similar to Stokes flow around a sphere F = 6πµRU ,

F =

ˆ

surface

σ · n dA+

ˆ

surface

τ · n dA (9.3.14)

Constrained minimization and maximization

Given arbitrary function, taking a total derivative of a function F (x, y, z),

dF =

(
∂F

∂x

)
y,z

dx+

(
∂F

∂y

)
x,z

dy +

(
∂F

∂z

)
x,y

dz (9.3.15)

If we add in the function G(x, y, z) = const, this creates a constraint to the system and that
the equation dF is not a total differential. However, d(F − λG) is a new function. The λ is
the Lagrange multiplier .

From Thermodynamics, the First Law is

dU =

(
∂U

∂S

)
dS +

(
∂U

∂V

)
dV +

(
∂U

∂N

)
dN (9.3.16)

where S, V,N are the entropy, volume, and number of molecules, respectively. This gives(
∂U
∂S

)
= T ,

(
∂U
∂V

)
= −P , and

(
∂U
∂N

)
= µ. For the Helmholtz free energy we have A(T, V,N).

Using a simple constraint we can derive the equation for the Helmholtz free energy from the
expression U(S, V,N). So, say we have the condition λS = TS = const. Say

d(U − TS) = dU − d(TS) .
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Then

d(TS) = T dS + S dT = 0 (9.3.17)

d(U − TS) = T dS − p dV + µ dN − T dS − S dT

= −S dT − p dV + µ dN (9.3.18)

This illustrates an interesting application of constraints and minimization.

Variations with Constraints

I =

ˆ b

a

F (y, y′, x) dx (9.3.19)

Now say we have some constraint,

J =

ˆ b

a

G(y, y′, x) dx (9.3.20)

Interestingly, we can use the same approach to solve this problem.

Example: Hanging Cable

From the above relations, we have that J is the constraint of the length of the cable. Using
the Lagrange multiplier with the definition, K = I + λJ . In this case we know for this
problem that J = 2C which is a simple input parameter. So substituting K, into the Euler
equation,

∂

∂y
(F + λG)− d

dx

(
∂

∂y′
(F + λG)

)
= 0 (9.3.21)

the system can be solved in the usual manner.
If F + λG do not depend on y then,

∂

∂y′
(F + λG) = const w.r.t. x (9.3.22)

If F + λG does not depend on x explicitly,

y′
∂

∂y′
(F + λG)− (F + λG) = const (9.3.23)

So with the hanging cable we have a system going from [−a, a] in x and the y coordinate
is the height of the cable. We have lengths l going between [0,±a] for a total length of 2l.
The cable as a whole must minimize the potential energy or

I =

ˆ
ρgy ds (9.3.24)
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We must assume constant density, perfectly flexible cable, and constant gravitational field.
The constraint is

J =

ˆ a

−a
ds = 2l

The expression of the differential is,

ds =
(
1 + y2

x

)1/2
dx (9.3.25)

So our system and constraints are

I =

ˆ a

−a
ρgy

(
1 + y2

x

)1/2
dx (9.3.26)

J =

ˆ a

−a

(
1 + y2

x

)1/2
dx = 2l (9.3.27)

So we define F (y, y′, x) = ρgy (1 + y2
x)

1/2
, and G(y, y′, x) = (1 + y2

x)
1/2

. By nature there is
no explicit dependence of the system on x.

y′
∂

∂y′

(
ρgy

(
1 + y2

x

)1/2 − λ
(
1 + y2

x

)1/2
)
−
[
ρ g y

(
1 + y2

x

)1/2 − λ
(
1 + y2

x

)1/2
]

= C1 (9.3.28)

with (extensive) differentiation and simplifying, we have

ρgy − λ =
(
1 + y2

x

)1/2
(9.3.29)

This is then solved,

y2
x =

(
ρgy − λ
C1

)2

− 1

yx =

√(
ρgy − λ
C1

)2

− 1

Rearranging, we get,

C1

ˆ
dy√

(ρgy − λ)2 − C2
1

= x (9.3.30)
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9.4 Lecture 29: December 5, 2012

Example: Hanging Cable, cont.

Returning to previous example; we had previously derived

C1

ˆ
dy√

(ρgy − λ)2 − C2
1

= x. (9.4.1)

Now we substitute (ρgy − λ) = C1 cosh(z), along with

dy =
C1

ρg
sinh(z) dz , (9.4.2)

and rewrite the equation

x =
C2

1

ρg

ˆ
sinh(z)

C1

√
cosh2(z)− 1

dz . (9.4.3)

Substituting again
√

cosh2(z)− 1 = sinh z,

x =
C1

ρg

ˆ
dz

=
C1

ρg
z + C2.

with

z =
ρg(x− C2)

C1

we set

z = cosh−1

(
(ρgy − λ)

C1

)
, (9.4.4a)

=
ρg(x− C2)

C1

. (9.4.4b)

Finally we get the solution

(ρgy − λ) = C1 cosh

(
ρg(x− C2)

C1

)
. (9.4.5)

For final exam

You may use Mathematica®, Matlab®, etc. (No help from other students). Note that
solutions on this exam will be general solutions for the system (i.e. without numerical values).
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First Problem

Cube of sides a, b, c and a non-steady state problem. IC: T (t=0) = 0, surfaces heated (BCs)
T (t>0) = Ts.

Second Problem

Problem solved in class:
∂T

∂t
= α

∂2T

∂x2
+ f(x, t)

Now solve similar,
∂2F

∂x2
+
∂2F

∂y2
= f(x, y) (9.4.6)

with boundary conditions,

F (x=0, y) = F0

F (x=a, y) = 0

∂F

∂y

∣∣∣∣
y=0

= 0

∂F

∂y

∣∣∣∣
y=b

= 0

Expand f(x, y) as a series along the x axis.

Third Problem

In class we solved,

A→ B → C

Now we have

A� B → C (9.4.7)

This gives the system,

dCA
dt

= −k1CA + k2CB, (9.4.8a)

dCB
dt

= k1CA − k2CB − k3CB, (9.4.8b)

dCC
dt

= k3CB, (9.4.8c)

and may be solved similarly.
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Fourth Problem

L = m0c

(
1−

√
1− v2

c2

)
− V (r) (9.4.9)

v2 = v2
x + v2

y + v2
z

r2 = x2 + y2 + z2

Perform for x component (at least) to show the generalization of Newton’s Third Law.
Observe that c is the speed of light.

Fifth Problem

The cylindrical Bessel (Hankel) function in

ˆ ∞
0

[
1

r

d

dr

(
r

dF

dr

)]
J0(kr)r dr = −k2F̂ (k) (9.4.10)

with F̂ (k) =
´∞

0
F (r) J0(kr)r dr

You will need the identity, J0(kr) = 2
kr

J1(kr)− J2(kr)
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UNIT 10

Asymptotic Analysis and Perturbation
Theory

10.1 Lecture 26: November 18, 2013

Asymptotic Perturbation Techniques for Solving Nonlinear Differ-
ential Equations

Several useful books are out there that discuss perturbation methods. Note that this material
is not in the textbook, but may be found in books such as,

• Nayfeh Introduction to Perturbation Techniques, Wiley 1993;

• Nayfeh Perturbation Methods, Wiley 2000;

• Van Dyke Perturbation Methods in Fluid Mechanics, Parabolic Press 1975.

First we will be discussing the general idea of these methods. This will help to illustrate
the power of the methods. Then we will cover some simpler problems in detail. So say we
have a small parameter and take a power series around it. This will not be in terms of
an independent variable or the eigenfunctions, but by the small parameter. The choice of
parameter is dictated by the physics of the problem.

Asymptotic Example: Navier–Stokes Equations

One major example of the use of asymptotic methods is in the Navier–Stokes equations of
fluid flow. The vector equation is

ρ

(
∂v

∂t
+ v ·∇v

)
= −∇P − µ∇2v. (10.1.1)

This gives us in fact four unknowns to solve for. The equation of mass must also be included
to fully describe the system;

∇ · v = 0. (10.1.2)
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This is a difficult set of equations to solve due to the nonlinearity of the v ·∇v term. There
are many everyday situations where this term is important.

As a contrast in heat transfer (or diffusion), nearly everything can be described using
a linear equation. In extreme cases, such as in very different boundary conditions, the
properties of the material may vary significantly over the gradient along the domain, and then
the solution would be nonlinear. However, for examples such as heat exchangers and water
flows in pipes, the gradients are sufficiently mild such that the heat conduction coefficient,
k, will be relatively constant.

Now consider a flow that is time independent. We do this only to simplify the system by
removing the ∂v

∂t
term. This is reasonable because there are many systems which are steady

state and will not reduce the generality of our discussion. Then we have the equation,

ρv ·∇v = −∇P − µ∇2v. (10.1.3)

But now we must identify the characteristic scaling parameters specific to our problem. This
will allow us to convert the dimensional variables into a dimensionless system. We know some
characteristic velocity, u; a standard length scale, L; and a viscosity based pressure scale,
µu
L2 . If we scale our variables we will replace them using

• v→ uv∗

• ∇→ 1
L
∇∗; since ∇ = ∂

∂x
+ ∂

∂y
+ ∂

∂z

• x→ Lx∗

• y → Ly∗

• z → Lz∗

• P → µu
L2P

∗

• ∇2 → 1
L
∇2∗

To avoid complicating our lives further, however, we will simply use the dimensionless forms
of the variables (without the star notation) from here on. This was simply a helpful transition
to remind us of the importance of dimensionless variables. So substituting these variables
we have the equation,

ρu2

L
v ·∇v = −µu

L2
∇P +

µu

L2
∇2u, (10.1.4a)

ρuL

µ
v ·∇v = −∇P +∇2u (10.1.4b)

This clearly illustrates the origin of the Reynolds number , Re = ρuL
µ

. This number tells us
what kind of flow we have. If it is large then we have a strong nonlinear term, and if it is
big enough it can dominate the flow such that the right hand side of the equation becomes
almost negligible. This is because the terms v ·∇v, ∇P , and ∇2u are all of the order of
one in the dimensionless system. However, the Reynolds number can be any value. If it is
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on the order of 1000 then it will be the dominant term. When it is small (Re� 1), then the
flow is viscous dominated, and nearly linear; so the equation can be solved analytically.

So we are now interested in Reynolds number flow which are small, but still finite. The
flow is viscous dominated, but we cannot ignore the nonlinear part. This means that Re < 1
and will determine how big the nonlinear effects are. This is what we want to solve; a
solution that accounts for a small nonlinearity. Note at if Re > 1, this approach would not
work.

Given Re = 0, we know the solution of the Stokes flow equation;

∇2u =∇P. (10.1.5)

So we may use this as our zero-order approximation. Then we will correct for it by adding
terms such as first, second, etc, depending on our interest in how accurate we want our
solution to be. Consider the expanded series of the velocity,

v = v0 + Re v1 + Re2v2 + Re3v3 + · · · . (10.1.6)

In general we will truncate this series very quickly because it is prohibitively impractical
to solve for very high order terms. Usually the linear term is the most interesting, and on
occasion the quadratic term can help in the analysis, but in most cases the cubic term and
beyond is not very helpful. We are looking for a solution for our velocity profile and our
pressure in the power series form;

P = P0 + ReP1 + Re2P2 + Re3P3 + · · · . (10.1.7)

Zero Order

Now we will look into our zero order. It is so called because it is effectively the pres-
sure/velocity multiplied by the Reynolds number to the zero power. The equations are now,

∇2v0 =∇P0, (10.1.8a)

∇ · v0 = 0. (10.1.8b)

We also will have a specified set of boundary conditions. Then we can solve this equation
(which we can do because they are linear). So, there is no principle difficulty due to the
nonlinear terms of the Navier–Stokes equation, because we do not have them in this particular
approximation. In fact, you have already solved examples of these equations. We will no
actually solve one in this lecture because there are many cases due to geometry, boundary
conditions, and so on. These could be no slip boundary conditions, stress, flux or others as
long as they are well defined. Then we may find the solutions which satisfy the DE’s and
boundary conditions. Thus, v0 and P0 are for all practical purposes treated as known values.

First Order

We can move on to the first order correction. The first order means that we are linear in
the Reynolds number. If we were to substitute for the velocities and pressure into the full
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Navier–Stokes equations, we then look only for terms which are proportional to the Re1 and
ignore all higher and lower order terms. When we do this we are trying to get rid of terms
such as second order to make this solvable. So, knowing the substitutions,

v = v0 + Re v1, (10.1.9a)

P = P0 + ReP1; (10.1.9b)

we can replace these in the Navier–Stokes equations,

Re (v0 + Re v1) ·∇ (v0 + Re v1) =∇ (P0 + ReP1) +∇2 (v0 + Re v1) , (10.1.10a)

=∇P0 + Re∇P1 +∇2v0 + Re∇2v1, (10.1.10b)

= Re∇P1 + Re∇2v1, (10.1.10c)

Expanding for the full left hand side,

Re v0 ·∇v0 + Re2v0 ·∇v1 + Re2v1 ·∇v0 + Re3v1 ·∇v1 = Re∇P1 + Re∇2v1. (10.1.10d)

Since we are truncating any higher order terms, we will only keep the equation,

Re v0 ·∇v0 = Re∇P1 + Re∇2v1. (10.1.11)

These are smaller (though non-zero) and are negligible compared to the first order terms.
So, we have a linear differential equation for v1. Canceling out the Reynolds number, we
have the equation,

v0 ·∇v0 =∇P1 +∇2v1. (10.1.12)

The mass conservation equation ∇ · v1 = 0 will also be included in the system. This means
that v1 will also be a conserved quantity. Now observe that we have two unknown functions
v1 and P1. We also have the non-homogeneous term in the momentum equation, but it is
known because we have determined v0, or v0 ·∇v0 is a function which we can substitute as
well. So to find v1 and P1 we must solve a linear non-homogeneous equation, which we can
do in principle.

We will also have to satisfy the boundary conditions. We also must consider that the sums
of the zeroth, first, second order, etc, must add up to the boundary conditions. So usually
v1 and P1 will be zero at the boundaries, since the zeroth order will ordinarily account for
any finite values of the boundary conditions.

Second Order

We move on to second order, but we will not go further because it would be impractical.
The second order will keep all of the quadratic terms. The velocity and pressures will be
given by,

v = v0 + Re v1 + Re2v2, (10.1.13a)

P = P0 + ReP1 + Re2P2. (10.1.13b)
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This will be a longer process dealing with the Navier–Stokes equation, so we will handle the
sides separately. We will only look at the terms Re2 and lower in the simplifications

LHS = Re
(
v0 + Re v1 + Re2v2

)
·∇

(
v0 + Re v1 + Re2v2

)
, (10.1.14a)

= Re v0 ·∇v0 + Re2v1 ·∇v0 + Re3v2 ·∇v0

+ Re2v0 ·∇v1 + Re3v1 ·∇v1 + Re4v2 ·∇v1

+ Re3v0 ·∇v2 + Re4v1 ·∇v2 + Re5v2 ·∇v2;

(10.1.14b)

where the only relevant (second order and less) terms are

LHS = Re v0 ·∇v0 + Re2v1 ·∇v0 + Re2v0 ·∇v1. (10.1.14c)

Now moving on to the right hand side, we have the gradient and laplacian linear terms;

RHS = −∇P0 − Re∇P1 − Re2∇P2 +∇2v0 + Re∇2v1 + Re2∇2v2. (10.1.15)

Setting LHS = RHS,

Re v0 ·∇v0 + Re2v1 ·∇v0 + Re2v0 ·∇v1

= −∇P0 − Re∇P1 − Re2∇P2 +∇2v0 + Re∇2v1 + Re2∇2v2.

(10.1.16a)

Combining terms of each order of Reynolds number on the right hand side,

Re v0 ·∇v0 + Re2v1 ·∇v0 + Re2v0 ·∇v1

=
��

���
���

��:0(
−∇P0 +∇2v0

)
+ Re

(
−∇P1 +∇2v1

)
+ Re2

(
−∇P2 +∇2v2

)
.

(10.1.16b)

From the first order correction,

Re2v1 ·∇v0 + Re2v0 ·∇v1 =

���
���

���
���

���
���

�:0

Re v0 ·∇v0 + Re
(
−∇P1 +∇2v1

)
+ Re2

(
−∇P2 +∇2v2

)
.

(10.1.16c)

Finally, what remains is

Re2v1 ·∇v0 + Re2v0 ·∇v1 = Re2
(
−∇P2 +∇2v2

)
. (10.1.16d)

This gives us the principle that we may simply group terms which are of the same order to
get the equation that we need to solve for that order. This gives us the new equation with
the Re2 terms canceled,

v1 ·∇v0 + v0 ·∇v1 = −∇P2 +∇2v2, (10.1.17)
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where we will additionally have the mass conservation term ∇ · v2 = 0. We will be solving
for v2 and P2, but we will depend on our solution for v0, v1, P0, and P1. However, we
have already obtained these in the previous solutions. Thus, v1 · ∇v0 + v0 · ∇v1 is a
known function. It may or may not be tractable to solve depending on the difficulty of the
expression. This is essentially how we get rid of the nonlinear term—by replacing it with
something that we know. Again at the boundaries v2 and P2 will be zero. Thus, we will
have a recursion-like relation between the successive orders. v0 and P0 will be known; then
v1 = f(v0, P0) and P1 = f(v0, P0); and v2 = f(v0,v1, P0, P1) and P2 = f(v0,v1, P0, P1). If
we were to move to the next correction the velocity and pressure would also be dependent
on all lower order terms.

Once we have the functions v0,v1,v2, P0, P1, and P2, we can construct our solution;

v = v0 + Re v1 + Re2v2 +O
(
Re3
)
, (10.1.18a)

P = P0 + ReP1 + Re2P2 +O
(
Re3
)
. (10.1.18b)

Thus, if Re ≈ 0.1 then the error will be approximately 0.001. If we had only done the zeroth
order term, the error would be approximately 0.1, or for the linear term of the Reynolds
number the approximation would be around 0.01. If the Reynolds number was, say 0.5, then
stopping at the linear term the error would be about 25%. At this point you want to go
further up to more terms in your approximation, or more likely, it would be better to use a
computer simulation.

Remember that the nonlinear fluid flow equation is also very difficult to solve numerically
as well as analytically because of many numerical stability issues. This makes the analytical
approximations quite valuable. If we look at the solution, the parameters changing power is
the Reynolds number, which is known. Now, the velocity and the pressures are complicated
functions of the coordinates. This makes the solution different to eigenfunction expansion
methods to solve the linear equations. It is similar in one way (the power series) because
you will have to sum up to infinity in the Reynolds number to get the exact solution. The
difference is that here it is much more complicated—we may have a series in space and a
series in Reynolds number on top of that! However, recall that if Re ≥ 1, this series will be
divergent and the solution is not valid. If the Reynolds number is less than one, the series
will sum up to a convergent value, but even for Re = 1 the series will not converge.

Asymptotic Example: Duffing Equation

Now we will solve a simple example. Note that actually solving the Navier–Stokes to the
quadratic term would take us a very long time! The Duffing equation is much simpler and
is well known;

d2u

dt2
+ u+ εu3 = 0. (10.1.19)

It is an initial value problem. The equation is similar to the linear oscillator, except we have
the cubic nonlinearity. Now epsilon is a parameter that tells us how strong the effect of the
nonlinear term is. Epsilon is thus the term to use as the small parameter around which to
take the power series.
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By the way in both of our examples, the small parameter multiplies the nonlinear term,
but it is not the highest order derivative. This is called a regular perturbation series because
if we take the limit of the small parameter goes to zero we still have the same boundary value
problem. But if we do multiply the highest order derivative (and there are many famous
cases of this), we will change the basic physics of the problem by changing the equation to
an algebraic one or into an overdetermined differential system. These are called singular
perturbation problems.

We may start solving the Duffing equation subject to the initial conditions

u(t=0) = x0, (10.1.20a)

u̇(t=0) = ẋ0. (10.1.20b)

So the solution will depend on time and also on ε, the small parameter.

Zeroth order

We need to begin with the zeroth order (ε = 0), and the equation obtained is simply

d2u

dt2
+ u = 0. (10.1.21)

This is still a Helmholtz solution, but will look different because we are doing an initial value
problem. An expression of the solution is,

u0 = α0 cos(t+ β0). (10.1.22)

Substituting this into the zeroth order differential equation proves that it cancels out.
Now the total solution may be expressed,

u(t, ε) = u0 + εu1 + ε2u2 + ε3u3 + · · · . (10.1.23)

For this example we will stop at the linear correction only. This means that the solution will
be truncated to,

u(t, ε) = u0 + εu1 +O
(
ε2
)
. (10.1.24)

First order

Using the double dot notion for a second order time derivative, we may substitute the
approximation back into the full Duffing equation,

ü0 + εü1 +O
(
ε2
)

+ u0 + εu1 +O
(
ε2
)

+ ε
[
u0 + εu1 +O

(
ε2
)]3

= 0. (10.1.25a)

To truncate the cubic term for simply the linear ε, we can approximate with,[
u0 + εu1 +O

(
ε2
)]3 ≈ u0 + 3u2

0u1ε+O
(
ε2
)
. (10.1.25b)

The equation that we need to solve is,

ü0 + u0 + ε
[
ü1 + u1 + u3

0

]
= 0. (10.1.25c)
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The left hand part which does not multiply ε has already been solved in the zeroth term so
all we must solve is,

ü1 + u1 + u3
0 = 0. (10.1.26)

The cubic power is now not a non-linear term because it is just a power of a known function.
Thus we have a non-homogeneous equation.

ü1 + u1 = [α0 cos(t+ β0)]3 . (10.1.27)

We will solve it using a linear combination of the homogeneous solution and the particular
solution.

First, we replace the cubic cosine function by using the identity cos3(θ) = 1
4

cos(3θ) +
3
4

cos(θ). This identity is actually the exact Fourier expansion of the cube of the cosine
function. In the original variables;

ü1 + u1 = −3

4
α3

0 cos(t+ β0)− 1

4
α3

0 cos(3t+ 3β0). (10.1.28)

The particular solution for this differential equation is

u1p = −3

8
α3

0t sin(t+ β0) +
1

32
α3

0 cos(3t+ 3β0). (10.1.29)

The homogeneous solution was just the cosine function. So the general solution is,

u = α0 cos(t+ β0) + ε

[
α1 cos(t+ β1)− 3

8
α3

0t sin(t+ β0) +
1

32
α3

0 cos(3t+ 3β0)

]
+O

(
ε2
)
.

(10.1.30)
There may appear to be four constants, but since we had the boundary conditions,

x0 = u(0) = α0 cos(β0) + ε

[
α1 cos(β1)− 3

8
α3

0t sin(β0) +
1

32
α3

0 cos(3β0)

]
, (10.1.31a)

ẋ0 = u̇(0) = −α0 sin(β0)− ε
[
α1 sin(β1) +

3

8
α3

0t sin(β0) +
3

32
α3

0 sin(3β0)

]
. (10.1.31b)

Collecting the terms of the same power of epsilon; for epsilon to the zeroth power

x0 = u(0) = α0 cos(β0), (10.1.32a)

ẋ0 = u̇(0) = −α0 sin(β0). (10.1.32b)

For the first power,

α1 cos(β1) =
3

8
α3

0t sin(β0) +
1

32
α3

0 cos(3β0), (10.1.33a)

α1 sin(β1) =
3

8
α3

0t sin(β0) +
3

32
α3

0 sin(3β0). (10.1.33b)

This gives us enough equations to find α1 and β1.
The Duffing equation can be solved exactly, but we want to compare the asymptotic

techniques to the exact solution.
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10.2 Lecture 27: November 20, 2013

An article was sent out on the importance of analytical solutions. This is important even in
these days of computers, because analytical solutions give you excellent simplified tests of
the code. The fellow who wrote the article makes a good case about it.

The last homework will be sent out this afternoon.

Homework 7 problem 4

Now we will discuss the fourth problem from the previous homework. The problem number
in the book is 12.4.15. We were given one particular solution of the differential equation,
which is the series,

y1(x) = x1/2

[
1− 3

4
x+

9

64
x2 − 3

256
x3 +O

(
x4
)]
. (10.2.1)

The second solution may be found from the expression;

y2(x) = y1(x)

ˆ
1

y2
1(x)

dx . (10.2.2)

In this case the Wronski determinant is simply 1 because P (x) = 0 so W = e0 = 1. The
integral is indeterminant and we don’t worry about the constant of integration here. This
equation is the first important point in solving this system.

We notice that we are dealing with a power series of y1(x). So, we must calculate the
value of the square of y1(x) and this requires us to decide how many terms of the series we
wish to keep. We have the terms, and

y2
1(x) = x

[
1− 3

2
x+

27

3
x2 +

15

64
x3 +O

(
x4
)]
. (10.2.3)

We could do this by hand (if we enjoy lengthy calculations), or we could do it using a software
such as Mathematica®, Wolfram|Alpha®, or others. This is very easy for Mathematica® to
do!

Once this is found, we need the series expansion of the reciprocal of y2
1(x). Noting that

we do not combine the x term in front so that we can expand the series around x = 0 with
a Taylor series,

1

y2
1(x)

=
1

x
[
1− 3

2
x+ 27

3
x2 + 15

64
x3 +O(x4)

] , (10.2.4a)

=
1

x

[
1 +

3

2
x+

45

32
x2 +O

(
x3
)]
, (10.2.4b)

=
1

x
+

3

2
+

45

32
x+O

(
x2
)

(10.2.4c)

Next we must integrate the expression, then we will multiply by y1(x), and give our solution
as the truncated series to the order of accuracy which we are interested in. We must be
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careful if we want to keep to quadratic accuracy because we will get higher order terms in
the process of the polynomial multiplication. Integrating the series,

y2(x) = y1(x) ln(x) + x3/2

[
3

2
− 27

64
x+

11

256
x2

]
. (10.2.5)

This is the solution of the problem.
Two things to keep in mind; we needed to use the y2(x) = y1(x)

´
W
y21(x)

dx to find the

solution, then we needed to manipulate the series expressions in a sensible way to get our
answer. This tedious, but the most straightforward approach to solving this problem.1

Asymptotics Example: The Duffing Equation (cont.)

We now continue on to return to the Duffing equation. If time permits we may do another
example first with asymptotic solutions, then do it exactly. Asymptotic expansions are not
limited to nonlinear methods; they can be done for linear as well. However this is usually
not necessary because these systems may already be solved exactly, and the solution is quite
simple.

As discussed previously the Duffing equation is nonlinear. The asymptotic solution is of
the form,

u = α0 cos(t+ β0) + ε

[
α1 cos(t+ β1)− 3

8
α3

0t sin(t+ β0) +
1

32
α3

0 cos(3t+ 3β0)

]
+O

(
ε2
)
,

(10.2.6)
where we have obtained α0, β0, α1, and β1. The α0 and β0 are obtained from the zero order
term, (ε0).

x0 = α0 cos(β0), (10.2.7a)

ẋ0 = −α0 sin(β0). (10.2.7b)

Furthermore, from the first order solution, ε1, we can find α1 and β1 with,

α1 cos(β1) =
3

8
α3

0t sin(β0) +
1

32
α3

0 cos(3β0), (10.2.8a)

α1 sin(β1) =
3

8
α3

0t sin(β0) +
3

32
α3

0 sin(3β0). (10.2.8b)

Now say we have α and β defined with the equations,

α0 cos(β0) + εα1 cos(β1) = α cos(β), (10.2.9a)

α0 sin(β0) + εα1 sin(β1) = α sin(β). (10.2.9b)

In principle, this allows us to calculate α and β simply by this relationship. It does involve
the small parameter, ε, but in general this is a known value. Now, rearranging, α0 = α+O(ε)
and β0 = β +O(ε) If we are interested in the zero order solution only,

u = α cos(t+ β) +O(ε) (10.2.10)

1As an alternative approach, we could assume a form of the series and then try to find the coefficients;
this method is possible, but not recommended.
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Exact solution of the Duffing Equation

Now the Duffing equation can be solved exactly. However, we may observe that the asymp-
totic solution is much simpler than the exact one. Again, the Duffing equation is

d2u

dt2
+ u+ εu3 = 0. (10.2.11)

We will use a similar method to previous work in solving nonlinear differential equations,
and we will end up with a solution that is quite similar to what we have already seen.
Introducing the new variable,

v =
du

dt
, (10.2.12)

we will move through a different angle of approaching the solution. Recall that the Duffing
equation is much like an oscillator equation; so u is the displacement and v is the velocity.
This gives us a tangible physical meaning to these quantities and this justifies the substitu-
tion. Then clearly d2u

dt2
= dv

dt
= dv

du
du
dt

by the chain rule for v(u(t)). Further, by definition of
v, this simplifies to,

d2u

dt2
= v

dv

du
. (10.2.13)

This is analogous to the v ·∇v term in the Navier–Stokes equations discussed previously.
This is because both of them are related to acceleration and inertial motion. We have thus
observed a relation between fluid motion and nonlinear oscillators; physical similarity can
appear in surprising areas.

Now our equation is,

v
dv

du
+ u+ εu3 = 0. (10.2.14)

This equation of two variables may be solved in a very similar way as the electrostatics
equation. Integrating the rearranged form of the equation,

ˆ
v dv = −

ˆ (
u+ εu3

)
du , (10.2.15a)

1

2
v2 = h−

(
1

2
u2 +

1

4
εu4

)
, (10.2.15b)

= h− F (u). (10.2.15c)

The left hand side (1
2
v2) is much like the kinetic energy, while h is the constant of integration,

and F (u) = 1
2
u2 + 1

4
εu4 for brevity. Now F is only a function of position and is related to

the potential energy of the system. It only has displacement, while kinetic energy depends
on the velocities alone.

Plotting the potential energy of the system with respect to displacement, we see that
for positive ε the function will be everywhere increasing. It is a symmetric function. The
constant, h is related to the total energy of the system. We can have different total energies,
but if h changes then the plot of v with respect to u gives an oscillatory phase plot as seen
by the elliptical nature of the plot. This is very typical of oscillators to have these phase
plots of closed oscillations. But we have it for both linear and nonlinear oscillators. This
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u

F (u)

u

v

h1

h2

Figure 10.1. Parabolic plot of F (u) versus u for positive epsilon with corresponding v and u
phase diagrams

changes the shape of the parabola, but it still has the same characteristics of an increasing
potential at both sides. Also note that for higher energies, the phase ellipse will be larger.

Now consider if we have a negative ε. If we have small displacement, the quadratic
term in f(u) will dominate, but as the displacement grows the quartic term multiplied by
epsilon will eventually become greater. These two terms will then be competing and at large
enough displacement the fourth order term will dominate. This cannot happen in a linear
oscillator. Here we observe some similarities and some crucial effects the total energy has

u

F (u)

u

v

h1

h2

Figure 10.2. Plot of F (u) versus u for negative epsilon with corresponding v and u phase diagrams

on the dynamics. If h is relatively low, the function will have a very normal oscillation, but
as we approach the maxima of F (u) the motion will be unlimited. The trajectories will be
much more like hyperbolas as if the system is repulsive. Recall that in planetary systems,
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as more kinetic energy is put in, the orbit becomes much more elongated. Consider that
planets have nearly circular orbits, while comets have very elliptical orbits. If a body—such
as the Voyager I and II satellites—receives sufficient energy it can be knocked away from the
gravitational pull of the sun. The effect is similar here, though this is not orbital. The lines
bounding these two phases are called separatrices.

Looking at the formula, we can summarize our observations (even though we are not
done yet—we can do another integration). Now, rearranging

v = ±
√

2 (h− F (u))1/2 . (10.2.16)

Thus, the velocity is real only if h ≥ F (u). In the plots of F (u) the velocity is not real above
the line of h. Concluding the phase behavior;

• For ε > 0 and h = 0 we have a closed circular, periodic trajectories.

• For ε < 0 we may have closed or open (separatrices).

Now the second integration may be performed; this will give us a closed form solution.
However, since u is the natural variable it will be and v is the dependent variable, the
implicit solution we will arrive at will look a little unusual. We will also introduce the initial
conditions,

u(0) = x0, (10.2.17a)

u̇(0) = ẋ0. (10.2.17b)

We may use these to find h. Applying the initial conditions to the first integral,

1

2
ẋ2

0 = h−
(

1

2
x2

0 +
1

4
εx4

0

)
, (10.2.18a)

h =
1

2
ẋ2

0 +
1

2
x2

0 +
1

4
εx4

0. (10.2.18b)

Clearly, the first term is the initial kinetic energy, and the second two terms are the potential
energy for the nonlinear oscillator.

So, now we may solve the differential equation,

du

dt
= ±

(
2h− u2 − 1

2
εu4

)1/2

, (10.2.19a)

ˆ
dt = ±

ˆ
1(

2h− u2 − 1
2
εu4
)1/2

du . (10.2.19b)

This is clearly not a trivial integral. However, such integral solutions are either tabulated or
may easily be computed. Nevertheless, the behavior is not obvious by looking at the integral
as is. Finally, the full solution is,

ˆ
1(

2h− u2 − 1
2
εu4
)1/2

du = ±
ˆ

dt . (10.2.20)

We find that this is very difficult to compare to the asymptotic solution directly. In many
cases the asymptotic is much easier to work with.
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Comparison to the Linear Oscillator

This point is even clearer in the example of the damped linear oscillator. The equation of
the linear oscillator (with stars for dimensional variables),

m
d2u∗

dt∗2
+ µ

du∗

dt∗
+ ku∗ = 0. (10.2.21)

This is like a pendulum in a viscous fluid. The oscillations will decay with time until we
reach the static case. Note that this is not a driven oscillation (the RHS is zero).

Let’s change the variables. Say there is a frequency ω0 =
√

k
m

. Then we have the

dimensionless system,

• t = ω0t
∗

• u = u∗

v∗
where v∗ may be the initial velocity.

This gives the dimensionless equation,

ü+ 2εu̇+ u = 0, (10.2.22)

where ε = 1
2

µ√
km

. We cannot assume that ε is small because the viscosity could be very
high. But if we have low viscosity, and a strong spring constant, then it may be sufficiently
small. Then we may use a perturbation technique to find an approximate solution.

So we will find the asymptotic solution, then recall the exact solution and truncate it at
the same term that we have gone to in the asymptotic expansion. Then we can compare
them; they should be the same. If they are not, then it is our error in the derivation.

So we look for a solution which depends on the time and small parameter;

u(t; ε) = u0(t) + εu1(t) + ε2u2(t) + · · · . (10.2.23)

Substituting this into the differential equation and combining terms of equal power of epsilon,

ü0(t)+εü1(t)+ε2ü2(t)+2εu̇0(t)+2ε2u̇1(t)+2ε3u̇2(t)+u0(t)+εu1(t)+ε2u2(t) = 0. (10.2.24)

Combining the terms for increasing powers of ε,

ü0(t) + u0(t) = 0, (10.2.25a)

ü1(t) + u1(t) = −2u̇0(t), (10.2.25b)

ü2(t) + u2(t) = −2u̇1(t). (10.2.25c)

Again we may observe that each equation depends on the solution of the previous order of
the parameter. This hierarchical layout of the equations means that we must find the zeroth
first to move on. Then we have the further orders with the non homogeneous equations.

The solution to the zeroth order is the same as the Duffing equation,

u0 = α cos(t+ β) (10.2.26)
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Then the first order becomes,

ü1(t) + u1(t) = 2α sin(t+ β). (10.2.27a)

This is very similar to having a driven oscillator, even though that was not in the original
form of the damped linear oscillator. The solution is

u1 = −αt cos(t+ β). (10.2.27b)

The second order perturbation equation is then,

ü2(t) + u2(t) = 2α cos(t+ β) + 2αt sin(t+ β). (10.2.28a)

The solution of this equation is harder (it may be done by varying parameters),

u2 =
1

2
αt2 cos(t+ β) +

1

2
αt sin(t+ β). (10.2.28b)

Thus the complete solution up to ε2 is,

u = α cos(t+ β)− εαt cos(t+ β) +
1

2
ε2α

[
t2 cos(t+ β) + t sin(t+ β)

]
. (10.2.29)

This is the approximate solution.
Now observe that often in these terms ε is multiplied by matching powers of t. This

limits how long we can go in time when using this expansion. This is because, if the product
(εt)n is not less then one, the series will diverge! Even moreso if simply εt > 1 this solution
will diverge. This is because if we were to sum up all terms up to infinity the series sum will
be infinite. So for this expansion we may only go up to times t < 1

ε
.

Exact Solution of Damped Linear Oscillator

Let us assume that the solution has the form Ceλt and insert into the differential equation
ü+ 2εu̇+ u = 0;

C(λ2 + 2ελ+ 1)eλt = 0. (10.2.30)

The characteristic equation is simply,

λ2 + 2ελ+ 1 = 0. (10.2.31)

This quadratic equation has the two roots;

λ = −ε±
√
ε2 − 1 . (10.2.32)

The trouble with this equation is that for ε < 1 this system will not be real. However this
is ok because it will give an oscillatory behavior. We may rearrange this to more naturally
express the harmonic nature of the equation,

λ = −ε± i
√

1− ε2 . (10.2.33)
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Then we recognize that the first term relates to the friction decay, while the second term
relates to the oscillations. Then we have a solution,

u = c1e−εt+i
√

1−ε2 t + c2e−εt−i
√

1−ε2 t. (10.2.34)

Now c2 is a complex conjugate of c1 to have a real solution for u (except if we are dealing
with quantum mechanics!). In other words if they are complex conjugates, we can write
them in the following form,

c1 =
1

2
αeiβ, (10.2.35a)

c2 =
1

2
αe−iβ. (10.2.35b)

Remembering the exponential definition of sine and cosine functions (e.g. cos(x) = eix+e−ix

2
),

our solution becomes,

u = αe−εt cos
(√

1− ε2 t+ β
)
. (10.2.36)

This exact solution is not all that similar to the asymptotic solution. But we may expand
the exact solution for small ε around ε = 0, then truncate the expression and compare to
the asymptotic solution.

We will need to expand the exponential and the cosine function. The expansion of the
exponential function is,

e−εt =
∞∑
n=0

1

n!
(−εt)n, (10.2.37a)

= 1− εt+
1

2!
ε2t2 − 1

3!
ε3t3 + · · · . (10.2.37b)

Then expanding the square root,

√
1− ε2 = 1− 1

2
ε2 − 1

8
ε4 + · · · . (10.2.38)

So within the cosine we have, (we will expand the signs around epsilon)

cos
(√

1− ε2 t+ β
)

= cos

(
t+ β − 1

2
ε2t− 1

8
ε4t+ · · ·

)
, (10.2.39a)

= cos(t+ β) cos

(
1

2
ε2t+

1

8
ε4t+ · · ·

)
+ sin(t+ β) sin

(
1

2
ε2t+

1

8
ε4t+ · · ·

)
,

(10.2.39b)

= cos(t+ β)

[
1− 1

2

(
1

2
ε2t+ · · ·

)2
]

+ sin(t+ β)

[
1

2
ε2t+

1

8
ε4t+ · · ·

]
,

(10.2.39c)

≈
(

1

2
ε2t− 1

8
ε4t

)
cos(t+ β) +

(
1

2
ε2t+

1

8
ε4t

)
sin(t+ β). (10.2.39d)
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Next we must multiply this series by the exponential expansion. Then we combine all terms
of the same order. Finally,

u = α

(
1− εt+

1

2
ε2t2

)[
cos(t+ β) +

1

2
ε2t sin(t+ β)

]
, (10.2.40a)

= cos(t+ β)− εαt cos(t+ β) +
1

2
ε2α

[
t2 cos(t+ β) + t sin(t+ β)

]
. (10.2.40b)

We can compare this to the asymptotic solution and realize that they are the same. In this
system, the asymptotic was a lot more hassle than using the regular linear solution. The only
major reason for doing this is to convince us that the asymptotic techniques work correctly
up to the order of magnitude that we have decided to truncate our series.
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10.3 Lecture 28: November 25, 2013

Today we will discuss several examples of perturbation techniques applied to fluid mechanics.
Time permitting we will cover singular perturbations.

Example from Fluid Mechanics

From undergraduate transport phenomena courses, we may recall the problems of inviscid
and irrotational flows; as well as problems involving stream functions and potentials. Re-
calling the flow around a cylinder with a uniform flow around the cylinder, we may solve the
problem exactly. The equation to solve is,

Figure 10.3. Uniform flow around a cylinder

∇2ψ = 0, (10.3.1)

where ψ is the stream function. Invsicid flow means that the problem does not include any
viscosity. This simplifies the Navier–Stokes equations significantly, and clearly reduces the
problem to a Laplace (or Poisson) problem. In general exact solutions are important because
they give us a clear picture of what is going on. They also allow us to perturb each solution
we have to cover a much broader range of cases (geometric, parameter space, etc). Otherwise
these problems may not easily be solved. This particular case is a good example.

Consider that inviscid means,
∇ · v = 0; (10.3.2)

in other words the rotation of the velocity is everywhere zero. Now the rotation of a vector
field is not simple because when we may compare to types of flows we may not observe any
overall angular change in the flow. However, the rotationally is related to wether a particle
(infinitesimal point) in the flow would not collide with neighbors. There is no friction or
interaction between neighboring points in the stream because each point moves along with
the other in irrotational flow. In the case of parallel plate flow, a particle (such as a piece of
cork) would rotate within the fluid, but in the case of a draining sink it would not change
its orientation. Thus rotation is directly related to viscosity because of the friction between
layers of fluids.

An inviscid fluid could also be rotational (∇ · v 6= 0) if there is a gradient in the fluid
motion imposed externally. In this case, we would solve an equation of the form,

∇2ψ = −ω(ψ), (10.3.3)

where ω(ψ) is the vorticity. The vorticity is usually a nonlinear function, and particularly
is a function of the stream function. This is problematic because in presents us with a
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−u

+u

Figure 10.4. Rotational and irrotational flow systems

Figure 10.5. Non-uniform flow around a cylinder

nonlinear differential equation. Now recall that once we know the stream function, ψ, we
can determine the components of the velocity by,

vx =
∂ψ

∂y
, (10.3.4a)

vy = −∂ψ
∂x

. (10.3.4b)

In other words, the stream function has all the information you need to find the flow field.
We, however, will limit our discussion to the stream function only for purposes of simplicity.

The first problem (uniform flow field) proposed, may be solved exactly for an idealized
system. The other cannot in the general sense; however we could use the first system as a way
to approximately solve the second using perturbations. In the undergraduate transport class
all focus is on the simplified case, but more often we may encounter more tricky problems
such as the second.

Uniform Flow Around a Cylinder

Now let’s remind ourselves how we deal with the simple case. Since the velocity is coming
in uniformly from infinitely far away, as it approaches the cylinder it will bend around the
cylinder because the cylinder is a solid object. Calling the flow at infinity, u, we will rewrite
the problem in polar coordinates because that system best relates to the symmetry of the
problem. We now have radial and angular coordinates r and θ. Given the new Laplace
operator, ∇2ψ = 1

r
∂
∂r

(
r ∂ψ
∂r

)
+ 1

r2
∂2ψ
∂θ2

, the equation now becomes,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= 0. (10.3.5)
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x

y

a

θ

r

Figure 10.6. Uniform flow around a cylinder with radial coordinates

This equation would be easy to solve if it was just an ordinary differential equation because
then we could multiply by twice the first order derivative and quickly solve. With this PDE,
we cannot.

The boundary conditions for this problem are,

ψ(r→∞, θ) = ur sin θ, (10.3.6a)

ψ(r=a, θ) = 0. (10.3.6b)

Thus, for large distance from the cylinder the velocity will go to uniform field, and the
velocity at the surface of the cylinder will be zero. The flow is symmetric around the x-axis
of the system, or

ψ(r, θ) = −ψ(r,−θ). (10.3.7)

This condition in fact simplifies the problem very significantly. We need the symmetry
to eliminate the nonlinear and non-homogeneous term. Note that an problem with an
arbitrary flow profile would not have any guarantee of symmetry. So the velocity would
have significantly different properties of the motion.

The boundary condition suggests the nature of our solution. For example we can solve
this system by considering a function of the form,

ψ(r, θ) = f(r) sin θ. (10.3.8)

We have reduced the problem to one of finding f(r). This eliminates the dependence on
θ in the differential equation and we have converted the problem into a single ordinary
dimensional equation. We already know the solution of f(r) elsewhere, so in the interest of
time,

ψ = u

(
r − a2

r

)
sin θ . (10.3.9)

Here the f(r) = u
(
r − a2

r

)
.

In general all stream functions have a corresponding potential function. So often a
problem may be solved by using either function. The gradient of the velocity potential is
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the velocity itself, or ∇φ = v. This gives the relations,

vx =
∂φ

∂x
, (10.3.10a)

vy =
∂φ

∂y
. (10.3.10b)

The isopotential in this problem is,

φ = u

(
r +

a2

r

)
sin θ. (10.3.11)

The lines of isopotential are everywhere normal to the streamlines.

Non-constant Gradient of Velocity Around Cylinder

Returning to the streamlines, we now have the exact solution. Consider if the incoming flow is
no longer uniform. Then we may use the exact solution and perturb it to find a new solution
to account for the nonlinearities in the problem. We remain in cylindrical coordinates. Now

x

y

θ

r

Figure 10.7. Non-uniform flow around a cylinder with radial coordinates

we must say that the vorticity function is small, otherwise the asymptotic solution will not
be valid due to too large of parameters. This may make the solution diverge. Say now
vx = ∂ψ

∂y
, then say our boundary condition is and transforming into polar coordinates,(

∂ψ

∂y

)
∞

= u
(

1 + ε
y

a

)
, (10.3.12a)

= u
(

1 + ε
r

a
sin θ

)
. (10.3.12b)

So we may find the stream function boundary condition by ψ =
´
vx dy from the definition of

the derivatives of the stream function. We will ignore additive constants because we do not
care about the value of the stream function but only the derivatives of it. So, integrating,

ψ = u

(
y +

1

2
ε
y2

a

)
, (10.3.13a)

= u

(
r sin θ +

1

4
ε
r2

a
[1− cos(2θ)]

)
. (10.3.13b)
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The second part of the boundary condition is clearly a perturbation from the uniform flow
profile. The vorticity at infinity will be determined from the differential equation, or

ω∞ = −∇2ψ∞, (10.3.14a)

= −εu
a
. (10.3.14b)

Clearly we may now write the equation to solve,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= ε

u

a
. (10.3.15)

The ε must remain less than one because this is our small parameter. The boundary condi-
tions,

ψ(r→∞, θ) = u

(
r sin θ +

1

4
ε
r2

a
[1− cos(2θ)]

)
, (10.3.16a)

ψ(r=a, θ) = 0. (10.3.16b)

Here we have an implied assumption that the circulation due to the non-homogeneous will
not also include anything induced by the body itself. If we consider a viscous fluid this
would further induce circulation and vorticity on the flow, because then the fluid contacting
or near the wall would have a gradient because of the non-slip boundary condition. This
would appear as an acceleration as we move further from the surface of the body and we
observe the shear flow. Again with inviscid flow this will not be the case and the vorticity is
already accounted for.

We may look for a solution in the form,

ψ(r, θ; ε) = ψ0(r, θ) + εψ1(r, θ) + · · · . (10.3.17)

Clearly we could add further terms, but at present we will only investigate the linear term.
The substituted equation is

∇2ψ0 + ε∇2ψ1 = ε
u

a
. (10.3.18)

The zero order solution (ε = 0) will be found with,

∇2ψ0 = 0. (10.3.19)

This was found by collecting the terms of the same order in epsilon. The problem we
previously solved is in fact the zero order solution for this current problem. The correction
for a finite epsilon is,

ε∇2ψ1 = ε
u

a
. (10.3.20)

Intriguingly this equation is simply just a constant RHS and not a function or a function of
the zero order solution.
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First Order Solution

We now need to solve the first order perturbation. For large radii (r → ∞), the boundary
conditions

ψ1(r→∞, θ) =
1

4

u

a
r2 [1− cos(2θ)] , (10.3.21a)

ψ1(r=a, θ) = 0. (10.3.21b)

This gives us a helpful form of the boundary conditions for the first order solution. We
may solve this by assuming a form of the solution. We know that the boundary condition,
1
4
u
a
r2 [1− cos(2θ)], is one particular solution of the system because this is an asymptotic form

which we must have at infinity. This would satisfy the homogeneous equation and be general
solution for homogeneous solution.

Now we must find the particular solution, χ1;

ψ1 =
1

4

u

a
r2 [1− cos(2θ)] + χ1(r, θ). (10.3.22)

The differential equation is,

∂2χ1

∂r2
+

1

r

∂χ1

∂r
+

1

r2

∂2χ1

∂θ2
= 0. (10.3.23)

Now the boundary conditions are

ψ(r→∞, θ) = const, (10.3.24a)

ψ(r=a, θ) = −1

4
ua (1− cos 2θ) . (10.3.24b)

The solution of this equation is,

χ1 =
1

4
ua

(
a2

r2
cos(2θ)− 1

)
. (10.3.25)

Then the total solution is,

ψ = u

(
r − a2

r

)
sin θ +

1

4
εu

[
r2

a2
(1− cos(2θ))

a3

r2
cos(2θ)− a

]
. (10.3.26)

So we have found a solution to our perturbation problem.
The algorithm for solving the perturbation problem:

1. Find nonlinear differential equation (NLDE) which is weakly nonlinear,

2. Approximate the solution by the series,

ψ = ψ0 + εψ1 + ε2ψ2 + · · · . (10.3.27)

3. Linearize the vorticity ω(ψ) by using information at infinity because the profile will
have a particular form.
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4. Then substitute form of ψ into original differential equation with linearized vorticity.

5. Collect terms of equal power of ε; you will need to solve as many differential equations
as the number of terms you are interested in for your solution.

6. Solve the differential equations and their respective boundary conditions.

Non-circular body

We could solve the following problem with perturbation methods as well. Now a circle is
very normal, but say we do not have a perfectly circular body. If the shape is only slightly
different, we can perturb the circle a small distance aε so that the minor axis of the ellipse
is length a(1− ε). Then the equation of the surface of the boundary of the elliptic cylinder

x

y

a
θ

r

(a− ε)

Figure 10.8. Uniform flow around an elliptical cylinder

is,

r = a(1− ε sin2(θ)). (10.3.28)

So,

r2 = a2 cos2(θ) + a2(1− ε) sin2(θ), (10.3.29a)

= a2 cos2(θ) + a2 sin2(θ)− εa2 sin2(θ), (10.3.29b)

= a2 − εa2 sin2(θ), (10.3.29c)

= a2
(
1− ε sin2(θ)

)
. (10.3.29d)

We will be looking for a solution of the form

ψ(r, θ; ε) = ψ0(r, θ) + εψ1(r, θ) + · · · . (10.3.30)

Thus the differential equation becomes

∇2ψ0 + ε∇2ψ1 = 0. (10.3.31)

180



10.3. Lecture 28: November 25, 2013 Methods of Analysis in ChNE

Notice that we have no vorticity, hence the RHS is zero. We must separate terms of the
same order,

∇2ψ0 = 0, (10.3.32a)

∇2ψ1 = 0. (10.3.32b)

Then, the boundary conditions are,

ψ0(r→∞, θ) = ur sin θ, ψ1(r→∞, θ) = 0. (10.3.33)

The first boundary condition is because the shape does not matter at significant distances
from the object. This is related to the fact that a slightly deformed circle is very much like a
circle from a sufficient distance. The correction for ψ1 is zero because of the fact that there
is no dependence of this condition on ε.

Now there are difficulties that still remain in the boundary condition on the surface. The
surface has the condition of a zero value of the stream function at the surface. Now we may
express this with the series approximation,

ψ0

[
a2
(
1− ε sin2(θ)

)
, θ
]

+ εψ1

[
a2
(
1− ε sin2(θ)

)
, θ
]

= 0. (10.3.34)

This is a difficult equation because it is an explicit function of epsilon by the ε multiplying
the second term, and an implicit function of ε in both terms—most importantly the zeroth
term. So we will need to expand everything, then truncate at the linear term otherwise we
will get something unreal. Doing a Taylor expansion around ε = 0 in the zeroth order term,

ψ0

[
a2
(
1− ε sin2(θ)

)
, θ
]

= ψ0 [a, θ] +
1

1!

(
∂ψ0

∂r

∂r

∂ε

)
r 6=0

ε, (10.3.35a)

= ψ0(a, θ)− ε∂ψ0

∂r
sin2(θ). (10.3.35b)

This is the zero order boundary term. Similarly, for the first order term, we only care about
the first term in the Taylor series (since we would have ε2 if we expanded further);

ψ1

[
a2
(
1− ε sin2(θ)

)
, θ
]

= ψ1(a, θ). (10.3.36)

Finally the boundary condition on the surface is

ψ(S, t) = ψ0(a, θ)− ε∂ψ0

∂r
sin2(θ) + εψ1(a, θ). (10.3.37)

So we have linearized our boundary condition as well.
For ε = 0, ψ0(a, θ) = 0, and for the first order

ψ1(a, θ) = a sin2(θ)
∂ψ0

∂r
, (10.3.38a)

=
1

2
au (3 sin(θ)− sin(3θ)) . (10.3.38b)
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We used our solution from the zeroth order problem to find this boundary condition (ψ0 =
u(r− a2

r
) sin θ) with the differentiation. We reduced the perturbation problem into the exact

one with linear boundary conditions.
What we must solve now is one with difficult boundary conditions. The total solution is

found to be

ψ = u

(
r − a2

r

)
sin θ +

1

2
εu

(
3
a2

r
sin(θ)− a4

r3
sin(3θ)

)
+O

(
ε2
)
. (10.3.39)

All of these examples are of regular perturbation. This means that the equations that we
generate remain consistent in terms of order. In all our examples, we start with the second
order differential equations and they stay that order. This is not always the case.

Singular Perturbations

The analysis of boundary layers in fluid mechanics is an example of a singular perturbation
problem. Here we have viscosity as well as flow around a large object. Sufficiently far from
the obstacle, the flow behaves to varying degrees like an inviscid flow. Nearby, however,
the viscosity becomes very important; the main problem with boundary layers is that we
have different domains. In one domain (near the surface) µ∇2v dominates, further away
the curvature becomes unimportant. As we move away, then v ·∇v. In the case of greater

Figure 10.9. Boundary layers

distances we only care about v·∇v = −∇P . If friction is ignored we don’t even need to solve
the equation. If we care only about the profile, then we only solve the mass conservation

∇ · v = 0, (10.3.40)

or
∇× v = −ω, (10.3.41)

more generally. So we solve a second order differential equation close to the boundary and
a first order differential equation far away. This is a problem because we have one extra
boundary condition that cannot be satisfied. These are complicated mathematically (even
simpler asymptotics are non-trivial), but there are simple cases that illustrate the point.

Example of Singular Perturbations: Matched Asymptotic Expan-
sion

In this example the system behaves very differently in the two subdomains we are observ-
ing. Here we may use an approach called matched asymptotic expansion. Here the small
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parameter will multiply the highest order derivative. When we take the limit as the small
parameter goes to zero, we loose a second derivative term. Now this method is generally
disliked by mathematicians because there is no rigorous theory underlying it (as is the case
with regular expansion). We also may not get a convergent solution! The zeroth order for
example may work well, the first order might look better, but the second gets terrible, the
third might get good again, and so on. It is not easy to know the convergence!

Let’s look at the following equation.

ε
d2f

dx2
+

df

dx
= a (10.3.42)

For ε = 0,
df

dx
= a. (10.3.43)

This is clearly a very different equation. Say our boundary conditions are

f(0) = 0, (10.3.44a)

f(1) = 1. (10.3.44b)

Regular solution of the differential equation

This equation can be solved exactly so that we compare the different domains of the solution.
Substituting y = df

dx
and manipulating

ε
dy

dx
+ y = a, (10.3.45a)

dy

dx
= −1

ε
(y − a), (10.3.45b)ˆ

1

y − a
dy = −1

ε

ˆ
dx , (10.3.45c)

y − a = C1e−
x
ε , (10.3.45d)

df

dx
= a+ C1e−

x
ε , (10.3.45e)ˆ

df = a

ˆ
dx+ C1

ˆ
e−

x
ε dx , (10.3.45f)

f = ax− C1εe
−x
ε + C2. (10.3.45g)

We have two boundary conditions remaining to determine the two constants in this equation.
Substituting for these boundary conditions,

0 = −C1εe
− 0
ε + C2, (10.3.46a)

C2 = C1ε; (10.3.46b)

1 = a− C1εe
− 1
ε + C2, (10.3.46c)

1 = a− C2e−
1
ε + C2, (10.3.46d)

C2 =
1− a

1− e−1/ε
. (10.3.46e)
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The first constant is now obvious as well. The solution is,

f = ax− 1− a
1− e−1/ε

e−
x
ε +

1− a
1− e−1/ε

, (10.3.47)

or

f = ax+ (1− a)
1− e−

x
ε

1− e−
1
ε

. (10.3.48)

If we plot this solution We observe that near x = 1 the solution is close to linear and the

x

f(x)

1

1

(1− a)

Outer

Inner

Figure 10.10. Plot second order system with small parameter

intersection with the y axis is 1− a. Near x = 0 there is a rapid change in the function up
until a certain point, while beyond it is very linear. This is called the inner domain, and the
linear part is the outer domain.

Asymptotic solution of the differential equation

This differential equation may also be solved using asymptotic methods. They are done in
a very different way, though. Let us introduce an inner coordinates and outer coordinates
systems. Effectively we will zoom into each region and solve it. Now with the new coordinates
(knowing that ε is small), X = x

ε
and f(x; ε) = F (X; ε). These we call the inner variables.

From these coordinates the equation becomes,

ε × ε
d2f

dx2
+

df

dx
= a, (10.3.49a)

ε2 d2f

dx2
+ ε

df

dx
= aε, (10.3.49b)

d2f

d(x/ε)2
+

df

d(x/ε)
= aε, (10.3.49c)

d2F

dX2
+

dF

dX
= aε. (10.3.49d)
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We see that the zero order solution will be the solution of a first order differential equation
while the outer solution will be of a second order differential equation. In this case we
are only doing the zero order term, but we have two equations corresponding to the two
different domains. We may ultimately need to solve four differential equations if we want
to approximate to the linear term. Thus, we deal with nonlinear equations by doing more
(easier) work!
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10.4 Lecture 29: November 27, 2013

Singular Asymptotic Solution of Second Order Differential Equa-
tion (cont.)

Returning to the previous lecture on the asymptotic solution of a singular perturbation.
Recall that one of our domains undergoes a rapid change, while the other is simpler and
much more nearly linear. The equation we were discussing was,

ε
d2f

dx2
+

df

dx
= a (10.4.1)

where a is an arbitrary constant. The exact solution was

f = ax+ (1− a)
1− e−

x
ε

1− e−
1
ε

(10.4.2)

The plot of the equation shows a linear change (with intersection at (1− a). The zero order

x

f(x)

1

1

(1− a)

Figure 10.11. Plot second order system with small parameter

asymptotic solution is often a sufficiently accurate solution for the inner and outer solutions.
Again we may zoom in to each of the solution areas, but each will give helpful descriptions
of their area of interest. In the inner solution form, we set X = x

ε
and f(x; ε) = F (X; ε),

and get the equation,
d2F

dX2
+

dF

dX
= aε. (10.4.3)

In the zero order, we will have,
d2F0

dX2
+

dF0

dX
= 0. (10.4.4)

In the outer domain, where we do not rescale the system and our equation would become a
first order differential equation in the zeroth term. So the outer differential equation is,

df

dx
= a. (10.4.5)
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From the exact solution, we can expect that the linear term will come from the inner
solution. We may solve the inner term equation by setting Y = dF

dX
;

dY

dX
= −Y, (10.4.6a)

Y = C1e−X . (10.4.6b)

Recall that we have a derivative,

dF

dX
= C1e−X , (10.4.6c)

F = C2 − C1e−X . (10.4.6d)

We can apply the boundary conditions and,

0 = F (X=0), (10.4.7a)

C1 = C2 = C. (10.4.7b)

Then the solution simplifies to,
F = C

(
1− e−X

)
. (10.4.8)

For the second boundary condition,

1 = F (X=
1

ε
), (10.4.9a)

C =
1

1− e−
1
ε

for ε→ 0;C = 1. (10.4.9b)

If we took ε→ 0 then C = 1, we would get.

Fin = 1− e−X . (10.4.10)

This fails to match the appropriate boundary conditions. Here we must now recognize that
we do not want to push our solutions (inner/outer) to be true at the opposite boundaries.
This generally won’t work. The inner solution will fulfill the condition at x = 0, while the
outer will match the condition at x = 1. In the transition regions we will match the two
equations.

Now the outer solution will easily give us,

fout = ax+ C3. (10.4.11)

For x = 1,

1 = a+ C3, (10.4.12a)

C3 = 1− a. (10.4.12b)

Thus the outer solution,
fout = ax+ (1− a). (10.4.13)
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At this point we have both of the solutions forms. For x → 0 the inner solution will fulfill
the left boundary condition for any value of C. We also may observe that the outer solution
clearly explains the asymptotic extrapolation of the solution from 1 toward the intersection
at 1− a.

Now we must have the condition that x → 0 F = 1, with X = x
ε
. From the meeting

condition,
C = 1− a. (10.4.14)

Then the inner solution is,
Fin = (1− a)

(
1− e−X

)
; (10.4.15)

the outer solution is,
fout = (1− a) + ax. (10.4.16)

How do we find the composite solution of the inner and the outer? We must sum the
two solutions and subtract them while they are written in terms of inner or outer variables.
So, in inner variables

Fin + fout +N = (1− a)
(
1− e−X

)
+ (1− a) + ax− (1− a), (10.4.17a)

= (1− a)
(
1− e−

x
ε

)
+ ax. (10.4.17b)

If we were to plot this it would look very similar to the solution for small ε. The asymptotic
solution will follow almost nearly perfectly for ε ∈ [0.1, 0.5]. This is surprising because 0.5 is
not much less than one. So putting all the solutions on a single figure, we see two solutions
are almost indistinguishable. We observe that the inner solution does satisfy the boundary

x

f(x)

1

1

(1− a)

Figure 10.12. Comparison of inner, outer, and true solutions

conditions near x = 0 and the outer solution satisfies the solution well near x = 1. Again
we had to subtract a value so that in the transition region, where both solutions are valid,
this allowed us to get a matching solution. Now we could calculate the first order correction,
but because it works so well, we see that there is little point for this problem. This method
works quite well in general; you simply have to follow the steps of the recipe! This is known
as the van Dyke matching principle.
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Example: Electro-kinetics in a Cylindrical Capillary

We will now discuss a more difficult example that should clarify more on this solution
technique. Here we will go into more detail to make the method more clear. Recall that when
we discussed solving variable coefficient equations using variation of parameters, particularly
when we know a homogeneous equation, we solved,

d2y

dx2
− cosh(Ψ0)y =

dΨ0

dx
, (10.4.18)

where,

Ψ0 = 2 ln

(
1 + te−x

1− te−x

)
. (10.4.19)

This is obviously not your usual equation. The equation was derived in a problem for mi-
crofluidics. In experiments on capillaries of dimeters on the order of a few hundred nanome-
ters, Gabriel Lopez wanted to know the fluid flow undergoing electrokinetic forces. We can

x

y

z

r

z

θ

R

x

y

z

r

z

θ

R

Figure 10.13. Capillary with electrokinetic effects (stereoscopic images)

calculate the flow using the distribution of the potential inside the capillary. Then the distri-
bution of charged particles and the fluid velocities can be found. The equation that describes
the electrostatic distribution is the Poisson equation;

∇2Ψ = − ρ0

εε0

. (10.4.20)

The right hand side is the charge density divided by the electric properties of the solution.
The charge density is related to the potential itself. If we consider a binary electrolyte such
as salt, the equation will look similar to,

∇2Ψ = κ2 sinh(Ψ). (10.4.21)

here the potential, Ψ, is made dimensionless by the factor, kt
e
≈ 27 mV. This is not important

for the mathematics, but still useful to note.
Now we know that the following equation has an exact solution if we are solving for a

flat surface,
d2Ψ

dx2
= κ2 sinh(Ψ). (10.4.22)
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Here we had to multiply both sides by κdΨ
dx

, then consider If we have cylindrical symmetry
we need a different Laplace operator. Then the equation is,

1

r

d

dr

(
r

dΨ

dr

)
= κ2 sinh(Ψ). (10.4.23)

This will make the problem more difficult to solve because we do not have the trick of
the total differential. So this is not easily solved analytically. We may approach this by
separating the domain into subdomains will be very useful. A common method of solution
is to consider the potential to be relatively low throughout the domain. Then the right hand
side is small and we can linearize the hyperbolic sine function. The form of the equation
becomes,

1

r

d

dr

(
r

dΨ

dr

)
= κ2Ψ. (10.4.24)

This is solved in terms of modified Bessel functions of the first kind, I0(κr). This is popular,
but not very natural; most materials have very high charges. Some common materials such
as glass (quartz) will often give on the order of 50 to 70 mV. This however is two to three
times the value at which the approximation remains reasonable. Then we cannot linearize
the equation.

Let’s use the trick of matched asymptotic expansions. Rewriting the equation into an
equivalent form,

1

κ2

d2Ψ

dr2
+

1

κ2r

dΨ

dr
= sinh(Ψ). (10.4.25)

The variable κ is known as the inverse screening parameter and has the dimensions of inverse
length. The inverse of kappa, κ−1, is often called the Debye parameter or inverse Debye
length. This refers to Debye’s study of electrolytes. The potential depends on the radial
position in the form of e−κr

r
. Thus the Debye parameter indicates how quickly the effect of

screening will die off. We are more interested in the math, but we must understand this to be
able to intelligently divide up the problem into subdomains. We define the inner variable as
x = κ(R−r). This is a dimensionless variable which starts at the wall and moves toward the
interior of the capillary. Now if we consider the nature of the equation very near the edge of
the capillary, the curvature of the capillary will have little effect on the equation. (Consider
that when one walks on Earth’s surface, we don’t worry much about the curvature if we are
only walking around Albuquerque!) We can assume that it is effectively flat provided that
the potential drops very rapidly—as is the case in highly electrolytic solutions. Thus our two
subdomains would be: a layer near the wall where the physics is approximately flat, and near
the center where the curvature is significant. (This is similar to how near the space station,
we will start to care about the curvature!) Now if we have a highly electrolytic solution,
then the effect of the solution will have dropped sufficiently that the central approximation
will only need the linear term. This will not introduce any unphysical inaccuracy. The inner
variable must be such that it is much less than the dimensionless radius of the capillary, or
x � κR. On the other hand if we have a quickly declining right hand side, then κR � 1
and 1

κR
= ε makes for a good small parameter.

Now let us consider that dx = −κ dr, then dx2 = κ2 dr2. Also 1
κr

= 1
κR−x and with the

small x condition is approximately 1
κR

. This is all we need to replace the equation form for
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the inner solution (which is the outer part of our physical problem),

Ψin = Ψ
(0)
in +

(
1

κR

)
Ψ

(1)
in + · · · . (10.4.26)

We will only take the terms out to being linear with respect to 1
κR

. Considering the expansion
of the right hand side,

sinh

(
Ψ

(0)
in +

(
1

κR

)
Ψ

(1)
in

)
= sinh

(
Ψ

(0)
in

)
+

1

κR
cosh

(
Ψ

(0)
in

)
Ψ

(1)
in . (10.4.27)

This takes into account that
(

1
κR

)
is small by making a Taylor expansion around the first

term and is our linear correction to the charge density function. The differential equation
becomes in total,(

d2

dx2
− 1

κR

d

dx

)(
Ψ

(0)
in +

(
1

κR

)
Ψ

(1)
in

)
= sinh

(
Ψ

(0)
in

)
+

1

κR
cosh

(
Ψ

(0)
in

)
Ψ

(1)
in . (10.4.28)

So expanding the parenthesis and ignoring super-linear terms, we can collect the terms and
construct

d2Ψ
(0)
in

dx2
+

1

κR

d2Ψ
(1)
in

dx2
− 1

κR

dΨ
(0)
in

dx
= sinh

(
Ψ

(0)
in

)
+

1

κR
cosh

(
Ψ

(0)
in

)
Ψ

(1)
in . (10.4.29)

When we separate for terms of different order, the zeroth order is

d2Ψ
(0)
in

dx2
= sinh

(
Ψ

(0)
in

)
, (10.4.30a)

and the first order is
d2Ψ

(1)
in

dx2
− dΨ

(0)
in

dx
= cosh

(
Ψ

(0)
in

)
Ψ

(1)
in . (10.4.30b)

What we have is a nonlinear equation in the zeroth order, but we have a known exact
solution. The other equation is a non-homogeneous second order equation with variable
coefficients. This is the hard problem to solve, but at least it is linear. We didn’t get rid of
the second order derivative (as in the previous example), but it does allow us to ignore the
effect of the curvature. That is the main difficulty in solving this problem.

So rewriting the differential equation for the first order,

d2Ψ
(1)
in

dx2
− cosh

(
Ψ

(0)
in

)
Ψ

(1)
in =

dΨ
(0)
in

dx
. (10.4.31)

The non-homogeneous and non-constant coefficient terms are both known from the zeroth
order solution.

If we have the Derichlet problem of a known potential at the boundary, we can say that
Ψ(r=R) = Ψ(x=0) = ζ. To make use of the zeroth solution, we must assume that the
solution will go to zero as the solution goes to infinity. Now in this problem we can only
go as far as the center of the cylinder, but our approximations will still work as long as
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the function drops down close to zero significantly before reaching the center. So we may
set the second boundary condition at an arbitrary radius. Now in the zeroth order solution
t = tanh(ζ) from the boundary condition.

We must now solve the first order correction. Using varying parameters we will first
need to solve the homogeneous equation by finding the second solution and using a linear
combination of the two, then we will vary the parameters. The homogeneous equation that
we will start with is,

d2Ψ
(1)
in

dx2
− cosh

(
Ψ

(0)
in

)
Ψ

(1)
in = 0. (10.4.32)

As long as we know one particular solution to this equation, we can find the universal solution
by finding the second solution and using a linear combination. In these matched asymptotic
solutions, usually we can guess one of the higher order solutions from other forms of the
lower order solutions. For the first solution, it will help by observing both equations. We
realize that by differentiating the zeroth order equation another time, we get,

d3Ψ
(0)
in

dx3
− cosh

(
Ψ

(0)
in

)dΨ
(0)
in

dx
= 0. (10.4.33)

What happens when we compare the equations, is we notice that Ψ1 =
dΨ

(0)
in

dx
then we can

quickly go from the first order homogeneous equation to the differentiated zeroth order
equation. (This trivial idea was not easy to come by!) Thus a first homogeneous solution is
actually the non-homogeneous term! Now if we find one, we know the other term as well.

Ψ1 =
dΨ

(0)
in

dx
, (10.4.34a)

=
4tex

t2 − e2x
. (10.4.34b)

Again this is a particular solution to the homogeneous equation. The second solution is

Ψ2 = Ψ1

ˆ
1

Ψ2
1

dx , (10.4.35a)

=
e2x + t2

e2x − t2
. (10.4.35b)

Finally, we must use variation of parameters to find the coefficients,

u1(x) =

ˆ
Ψ2

dΨ
(0)
in

dx
dx+ C1, (10.4.36a)

=

ˆ
Ψ2Ψ1 dx+ C1, (10.4.36b)

u2(x) =

ˆ
Ψ1

dΨ
(0)
in

dx
dx+ C2, (10.4.36c)

=

ˆ
Ψ1Ψ1 dx+ C2. (10.4.36d)
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Coincidently this simplified greatly—this is a very problem specific and lucky thing! With
this we may construct the solution as,

Ψ
(1)
in = u1(x)Ψ1 + u2(x)Ψ2. (10.4.37)

The constants are limited by the requirement that the first order correction to the inner
solution must vanish both at zero and infinity. This will avoid unphysical contributions at
the boundary. Applying the conditions to find C1 and C2,

Ψ
(1)
in (x=0) = 0, (10.4.38a)

Ψ
(1)
in (x→∞) = 0, (10.4.38b)

we get the solution,

Ψ
(1)
in (x) =

2t [xex − t2 sinh(x)]

e2x − t2
. (10.4.39)

Then the total inner solution is,

Ψin = Ψ
(0)
in +

1

κR
Ψ

(1)
in , (10.4.40a)

= 2 ln

(
1 + te−x

1− te−x

)
+

(
1

κR

)
2t [xex − t2 sinh(x)]

e2x − t2
. (10.4.40b)

This tells us what is happening to the solution in the small region near the wall. The region
near the wall is the more difficult part to solve.

The outer solution will be easier because we will have a much smaller potential in the
region. When we plot the potential, we observe that the potential drops down from ζ at
faster than exponential. So everywhere above a certain point we will not be able to linearize

Figure 10.14. Plot of potential with x in capillary

the density dependence. We see that there is a small contribution in the outer solution that
is due to the curvature (the sinh(x) term). Further beyond the point, the curvature becomes
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very important, but simultaneously the potential becomes less than one Ψ(x) < 1. Around
1 the approximations will be the least accurate, but that is a price that we have to pay.

So now we must solve a different equation for the outer problem (middle of the pore).
Here we must account explicitly for the curvature;

d2Ψout

dr2
+

1

r

dΨout

dr
= κΨ. (10.4.41)

The second term of the left hand side is the term that gives the curvature in the equation.
At the same time the potential is low enough that we may approximated the right hand side
by a simple linear approximation of the potential. This is due to the Taylor expansion of
the hyperbolic sine,

sinh(y) = y +
y3

3!
+ · · · . (10.4.42)

We may stop at the first term, which is sufficiently accurate because the error is only O(Ψ3).
This is actually quite good as long as y < 1; otherwise the series diverges. In this case, for
Ψ < 1 this is a good approximation. The problem we deal with now is something which
has been solved by the modified Bessel functions. The first and second order solutions will
be very similar, so we can separate the solutions. In the inner solutions the two terms were
different, but in the outer they will end up being the same. So, using the modified Bessel
functions of first kind (zero order) we have the known solutions

Ψ
(0)
out = A I0(κr), (10.4.43)

and the first correction,
Ψ

(1)
out = B I0(κr). (10.4.44)

We need to match these functions to the inner solution.
We will do this procedure next time; next class will be our final lecture. We will not hold

class next Wednesday.

194



10.5. Lecture 30: December 2, 2013 Methods of Analysis in ChNE

10.5 Lecture 30: December 2, 2013

We will next be doing the final. Dr. Petsev will try to send out the final Thursday. (Thursday
was considered as an option.) The final is due Friday of next week at 2 PM in his office.

We return to the example from last time where we were solving the electrokinetic capillary
problem.

Example: Electro-kinetics in a Cylindrical Capillary (cont.)

Note that this approach could be useful if we wanted to solve for on the outside of a cylinder
as well. Here we would need to change the sign in front of the − 1

κr
dΨ
dr

term.

Figure 10.15. Capillary with electrokinetic effects

Now the equation for the potential is the Poisson–Boltzmann equation,

∇2Ψ = κ2 sinh(Ψ). (10.5.1)

We consider a region near to the wall where the potential is especially high and the curvature
is relatively insignificant. The radius is much greater and as we get near to the center the
potential will be less than one and the hyperbolic sine term can be linearized. On the wall
we made use of the fact that the equation

d2Ψ

dx2
= κ2 sinh(Ψ) (10.5.2)

may be solved exactly. Far from the wall, we needed to solve

1

r

d

dr

(
r

dΨ

dr

)
= κ2Ψ. (10.5.3)

We first had to identify the two separate regions in the physical problem. Then we related
these regions to length scales and the small parameter ( 1

κR
). Since κR is large, the boundary

region is very small; thus we identified the two regions. Presenting the solutions in the form
of the inner variables and expansion around small parameter; Ψin = Ψ

(0)
in + 1

κR
Ψ

(1)
in + · · ·. In

total we will get four different differential equations; this is reduced to three because the
outer solutions (near the middle) will have exactly the same mathematical forms. We have
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zeroth and first order equations for the inner and outer zones. In the general case we would
have something unsolvable, but now we can solve for these effects. We have previously solved
the equations;

Ψ
(0)
in = 2 ln

(
1 + te−x

1− te−x

)
. (10.5.4)

This is exactly what was found by solving the flat equation. The outer solution is the solution
of the linearized equation,

Ψ
(0)
out = A I0(κr). (10.5.5)

This one does not satisfy the boundary on the edge of the cylinder, so it is hard to know the
value of the constant.

Zeroth order solution matching

Now let’s find A by matching the two solutions. Observing the zeroth order equation near
the surface, consider the asymptotics of the function,

1 + y

1− y
≈ 1 + 2y, (10.5.6a)

2 ln

(
1 + y

1− y

)
≈ 2 ln(1 + 2y), (10.5.6b)

≈ 2(2y), (10.5.6c)

= 4y. (10.5.6d)

In general from the asymptotics the solution tends to

Ψ
(0)
in (r)→ 4te−κ(R−r). (10.5.7)

where we substituted for x = κ(R − r) to return to the outer variable form. Extrapolating
the outer solution near the wall, from tables on asymptotics of Bessel functions

Ψ
(0)
out ≈

Aeκr√
2πκR

. (10.5.8)

If we take our solution and look at asymptotic behavior, the two asymptotics must become
the same to match the solution. We get from this,

4te−κReκr =
Aeκr√
2πκR

, (10.5.9a)

A = 4te−κR
√

2πκR . (10.5.9b)

Recall that t = tanh(ζ/2). Now we can completely write our zero order solution;

Ψ(0)(r) = 2 ln

(
1 + te−x

1− te−x

)
+ 4te−κR

√
2πκR I0(κr) + C (10.5.10)

This applies to the whole region. This is not all because we have matched the two solutions
so that the solutions are matched where the both are contributing to the system. That’s
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why we solved for A. We must subtract one of the two asymptotic solutions to get the right
value; so we select from the second term,

Ψ(0)(r) = 2 ln

(
1 + te−x

1− te−x

)
+ 4te−κR

√
2πκR I0(κr)− 4te−κ(R−r) . (10.5.11)

First order solution matching

Moving on to the first order correction of the solutions, we would like to match the first
order inner and outer. The first order inner solution is,

Ψ
(1)
in =

2t
[
κ(R− r)eκ(R−r) − t2 sinh(κ(R− r))

]
e2κ(R−r) − t2

. (10.5.12)

For large x the asymptotic form of the expression is −t3e−κ(R−r). This is for near the wall.
For near the center we have the first order equation is similar to the zeroth, but with a
different constant;

Ψ
(1)
out = B I0(κr). (10.5.13a)

This will have the same asymptotics as the zeroth order,

Ψ
(1)
out ≈

Beκr√
2πκR

. (10.5.13b)

Requiring that the two expressions be the same in their asymptotic form,

−t3e−κ(R−r) =
Beκr√
2πκR

, (10.5.14a)

B = −t3
√

2πκR e−κR. (10.5.14b)

So the complete first order solution with inner and outer solutions is;

Ψ(1)(r) =
2t
[
κ(R− r)eκ(R−r) − t2 sinh(κ(R− r))

]
e2κ(R−r) − t2

− t3
√

2πκR e−κR I0(κr) + t3e−κ(R−r) .

(10.5.15)
The complete solution will be Ψ(r) = Ψ(0) + 1

κR
Ψ(1),

Ψ(r) = 2 ln

(
1 + te−x

1− te−x

)
+ 4te−κR

√
2πκR I0(κr)− 4te−κ(R−r)

+
1

κR

[
2t
[
κ(R− r)eκ(R−r) − t2 sinh(κ(R− r))

]
e2κ(R−r) − t2

− t3
√

2πκR e−κR I0(κr) + t3e−κ(R−r)

]
(10.5.16)

Now consider if we wanted the charge of the surface. The charge is,

σ = εε0

[
dΨ

dr

∣∣∣∣
r=R

. (10.5.17)

197



Petsev and Benner Unit 10. Asymptotic Analysis and Perturbation Theory

We would effectively be finding the charge by taking the derivative of the potential and
evaluating it at the surface. Then we would only care about the inner solution contributions
Ψin. The resulting charge is,

σ = 2κεε0

[
sinh

(
ζ

2

)
− 1

κR
tanh

(
ζ

4

)]
. (10.5.18)

The first term comes from the flat solution which is the zero order, the second term comes
from the correction for the curvature. This is interesting because this equation was previously
derived semi-emperically. The asymptotic analysis now can tell us what the meaning of each
of the two terms is from a theoretical standpoint. If the problem outside the cylinder was
being solved, the only difference is that we would have a plus sign in front of the second
term.

For a charged capillary filled with electrolyte solution where an electric field is applied
on both sides, the fluid will move. It has been shown early in the 1900s, that the fluid flow

Figure 10.16. Capillary fluids driven by electric fields

is given by the equation

∇2v =
εε0

η
E∇2Ψ. (10.5.19)

Thus the potential distribution inside determines the fluid flow profile. Previously this was
alluded to as when we know the potential we can know many things about what is going on
in the capillary.

In the cylindrical symmetry we are looking for a solution for the velocity in the form of,

v = v(0) +
1

κR
v(1). (10.5.20)

Clearly we may show that there is a similarity between these two equations such that the
form of the potential directly gives us the form of the velocity solution. For the inner part
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(close to the wall), we can substitute for the expansions

d2

dx2

(
v

(0)
in +

1

κR
v

(1)
in

)
− 1

κR

d

dx

(
v

(0)
in +

1

κR
v

(1)
in

)
=
εε0

η
E

[
d2

dx2

(
Ψ

(0)
in +

1

κR
Ψ

(1)
in

)
− 1

κR

d

dx

(
Ψ

(0)
in +

1

κR
Ψ

(1)
in

)]
(10.5.21)

Then we can apply the operators and ignore terms greater then first order and collect the
terms. For the zero order,

d2v(0)

dx2
=
εε0

η
E

d2Ψ
(0)
in

dx2
, (10.5.22)

and for the first order,

d2v(1)

dx2
− dv(1)

dx
=
εε0

η
E

(
d2Ψ

(1)
in

dx2
− dΨ

(0)
in

dx

)
. (10.5.23)

The solution to the zeroth order term is a known one;

v
(0)
in =

εε0

η
E
[
ζ −Ψ

(0)
in (x)

]
. (10.5.24)

The boundary conditions to obtain this;

v(r=R) = 0, (10.5.25a)

Ψ(r=R) = ζ. (10.5.25b)

Also the velocity reaches stead state far away, and the potential goes to zero far away. So
we are looking at a solution that behaves properly near the wall, but does not satisfy the
boundary condition in the center. The other solution is the following,

v
(1)
in =

εε0

η
EΨ

(1)
in . (10.5.26)

This is from the constraints,

v(r=R) = 0, (10.5.27a)

Ψ(r=R) = 0. (10.5.27b)

So we have the first order and zeroth order corrections. Combining the inner velocity is
found,

vin = v
(0)
in +

1

κR
v

(1)
in , (10.5.28a)

=
εε0

η
E [ζ −Ψin(x)] . (10.5.28b)
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This is what we generally observe in solving this kind of potential problem; the velocity flow
profile follows exactly the shape of the potential. The same thing will come out when we
solve for the outer solution. In the end we end up with the result;

v = v(0) +
1

κR
v(1), (10.5.29a)

=
εε0

η
E

[
ζ −

(
Ψ(0) +

1

κR
Ψ(1)

)]
. (10.5.29b)

This concludes this problem.
We will not have asymptotics problems on the final since there were no homework’s on

the concepts. This unit was to give you an idea and feeling for how these methods work.
Any other material may be on the final.
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UNIT 11

Chapters 21 & 22—Probability and
Statistics

11.1 Lecture 30: November 26, 2014

Probability and Stochastic Processes

We will primarily be covering concepts in this lecture. In particular we will cover discrete
random variables. Bernoulli was one of the pioneers of statistics. He was motivated by
gambling and wrote a long article called The Art of Conjecture which deals with coin tosses
and probabilities.

So let us define a space of possible outcomes, then pick one randomly. In a coin toss we
only have two possibilities with heads and tails. A dice has six outcomes, and others can be
much more complicated. In general, we have a probability of an event,

p {Ej} = lim
N→∞

Nj

N
. (11.1.1)

j = 1, 2, . . . , n which gives the dimensionality of the sample space (e.g. 2 for coin, 6 for dice).
If each attempt always gives you the same outcome, then

Nj = N → p (Ej) = 1. (11.1.2)

Probabilities are normalized. If you have many different probabilities, the sum is one;
n∑
j=1

p (Ej) = 1. (11.1.3)

This property may be used for normalization.
If we have a joint probability distribution, where outcomes are occurring simultaneously,

Both may occur, and there is the probability that only one of them will occur. Then,

p (i or j) = p (Ei) + p (Ej) . (11.1.4)

To define the overlapping region, we use the symbol A∩B. To define the connection of both
regions, we use the symbol A ∪B.

The theory of probability is based on a few axioms. For all possible outcomes, Ω,
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A B

A ∩B

Figure 11.1. Venn diagram of related sets

1. p(A) ≥ 0

2. p(Ω) = 1

3. for A ∩B = ∅ then p (A ∪B) = p(A) + p(B)

4. given p(A) (probability for A) then for anything but A is 1− p(A)

5. The probability for the empty set is zero: p(∅) = 0

Conditional Probability

We have different types of probability based on our system. An important one is the con-
ditional probability . What is the probability of being on a particular spot in a lattice. This
will require the knowledge of the probabilities of being at the neighbors. This is represented
by

p (A|B) p (B) = p (A ∩B) . (11.1.5)

Figure 11.2. Brownian particle on a lattice

This is a useful simplified representation of a Brownian particle. Clearly present position
is a result of previous positions, and future locations will branch from there.

If we have independent outcomes,

p(A,B) = p(A)p(B). (11.1.6)
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A B

Figure 11.3. Independent outcomes

for heads or tails the probability is 1/2 each. What now is the chance to get heads twice in
a row is

P (H,H) =
1

2

1

2
, (11.1.7a)

=
1

4
. (11.1.7b)

in general we will have repeated probabilities of the form of 1/2n, or

P (H,H, . . . , H) =
1

2n
. (11.1.8)

Mean Values (Expected value)

For a set X with values xi for i = 1, . . . , n, then the mean is expressed,

µ =
n∑
i=1

xiP (xi). (11.1.9)

We may also represent the mean with 〈X〉 or X̄. xi = f(xi) for f(x)

E {f(x)} = 〈f(x)〉 , (11.1.10a)

=
n∑
n=1

f(xi)p(xi). (11.1.10b)

f(x) = Xm

The moment:

E {Xm} =
n∑
i=1

xmi φ(xi). (11.1.11)

gives the mth moment. Usually this is not equivalent:

E
{
X2
}
6= E {X}2 . (11.1.12)
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Now considering E {(X − µ)m} = 〈(X − µ)m〉 is the mth central moment (relative to the
mean).

If m = 2 this is known as the variance of x and is denoted with

E
{

(X − µ)2
}

= Var {X} = σ2. (11.1.13)

Now

σ2 ≥ 0, (11.1.14a)

σ2 = E
{
X2
}
− E {X}2 . (11.1.14b)

We will prove this identity by going through the definitions.

E
{

(X − µ)2
}

= E
{
X2 − 2Xµ+ µ2

}
. (11.1.15a)

Determining an expected value is a linear operation, meaning in particular that,

E {x+ y + z} =
n∑
i=1

(x+ y + z)P (x)P (y)P (z), (11.1.16a)

=
n∑
i=1

xP (x)P (y)P (z)︸ ︷︷ ︸
P(x)

+
n∑
i=1

y P (x)P (y)P (z)︸ ︷︷ ︸
P(y)

+
n∑
i=1

z P (x)P (y)P (z)︸ ︷︷ ︸
P(z)

.

(11.1.16b)

so returning to the derivation,

= E
{
X2
}
− 2µE {X}+ E {µ} , (11.1.17a)

=
n∑
i=1

x2
iP (xi)− 2µ

n∑
i=1

xiP (xi) +
n∑
i=1

P (xi), (11.1.17b)

∑n
i=1 P (xi) = 1 and

∑n
i=1 xiP (xi) = µ

= E
{
X2
}
− 2µ2 + µ2, (11.1.17c)

= E
{
X2
}
− µ2, (11.1.17d)

= E
{
X2
}
− E {X}2 . (11.1.17e)

For a cumulative distribution

p(xi)→ X = xi, P (xi)→ X ≤ xi. (11.1.18)

where

P (xi) =
∑
xi≤x

p(xi). (11.1.19)

We can have joint probabilities or joint cumulative probabilities
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x̄ x

P (x)

x

p(x)

Figure 11.4. Cumulative distribution

P (xi, yj) =
∑
x≤xi

∑
y≤yj

p(xi)p(yj). (11.1.20)

E {f(x, y)} =
∑
x≤xi

∑
y≤yj

f(xi, yj)p(xi, yj). (11.1.21)

See example 3 in the book. then

E {(X − µx)(Y − µy)} = Cov(X, Y ) (11.1.22)

This is referred to as the covariance and gives how related the two random events are. This
is not the same as E {(X − µx)}E {(Y − µy)}. Also Cov(X, Y ) = 0 is a necessary, but not
sufficient condition for them to be independent.

Coin Toss

Returning to the coin toss. If we want to have the probability of doing exactly m times in n
tosses (n ≥ m). For each toss we have the probability of one half. The number of possible
outcomes for n tosses is 2n, but we only want to know one. So how many ways can we get
this? This is the same problem as with the lattice with n cells and we want to arrange m
objects on the lattice. This can be done many ways. Say we want to arrange 6 objects in a

Figure 11.5. Several occupied states on a lattice

lattices of 24 sites; we can arrange this many ways.
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Now considering problems of statistical mechanics, if we have a total of n options. For
trial 1 we have n possible options, for trial 2 we have only n− 1 choices. Moving on to trial
3 we have been reduced to only n − 2 we have fewer down to n −m + 1 possibilities if we
have done m trials. The resulting probabilities,

n(n− 1)(n− 2) · · · (n−m+ 1) =
n!

m!(n−m)!
. (11.1.23)

In this way we can arrange m objects over n places. It does not really matter which item we
put in each place, so long as the places themselves are equivalently filled. To correct for this
we could rearrange it m! times. This gives the total number of configurations that conform
to the requirement. This is the fraction of outcomes that corresponds to the requirement;

probability to have m heads =
n!

m!(n−m)!

1

2n
. (11.1.24)

and gives the probability to have m heads.

n!

m!(n−m)!
(11.1.25)

gives m objects that are indistinguishable on n locations for n ≥ m. n = m gives only one
possibility.

5 10 15 20

0.05

0.10

0.15

12 x

p(x)

Figure 11.6. Binomial distribution for n = 20 trials; cumulative probability of twelve or fewer
heads

The peak probability is at 1/2. We want to find the maximum of the function using
differentiation. Derivatives of factorial functions is difficult, but we may use the Stirling
approximation (where n, m and (n−m) are large), then

lnx! ≈ x lnx− x. (11.1.26)
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This formulas significantly simplifies the function. To find the maximum,

∂

∂m

(
n!

m!(n−m)!

)
= 0. (11.1.27a)

all we need for minimization is

∂

∂m

(
1

m!(n−m)!

)
≈ −m lnm+m− (n−m) ln(n−m) + (n−m). (11.1.28a)

For a peaking function, the logarithm of the function will also peak at that point. The

0 5 10 15 20

0.00

0.05

0.10

0.15

0.20

max

x

p(
x

)

−30

−20

−10

0

ln
[p

(x
)]

Figure 11.7. Binomial and log of binomial distribution for n = 20 and p = 0.25

approximation will further simplify

∂

∂m

(
1

m!(n−m)!

)
≈ ln

(
n−m
m

)
= 0. (11.1.29a)

Thus n−m
m

= 1 gives the solution of the minimum,

m =
n

2
. (11.1.30)

Now when we have either one or another possibility to occur p or q with p+q = 1. Then,

p(m) =
n!

m!(n−m)!
pmqn−m. (11.1.31)

if p = 1/2 then q = 1/2 and the second part of the right had side will be 1/2n as seen
previously. For molecules on the lattice we are dealing with numbers on the order of n ≈ 1023.
For such values the graph is nearly the delta function with a very high accuracy of the Stirling
formula;

x! = x lnx− x. (11.1.32)
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max n

x

p(x)

Figure 11.8. Probability narrowing toward δ-function with increasing sample size n. Binomial
distribution with p = 0.35 for changing n while graphing with equal areas: n = 10 (blue), n = 40
(red), andn = 160 (green).
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Binomial Distribution

Previously we had come up with the binomial distribution and want to look at some impor-
tant results. We are considering randomly distributed objects in bins. If we have bins of size
∆t with a total interval of t, then the probability is,

p =
∆t

t
, (11.2.1)

and is related to the cumulative probability

P (m) =
n!

m!(n−m)!
pm(1− p)n−m. (11.2.2)

Similarly,

P (m) =
n!

m!(n−m)!

(
∆t

t

)m(
1− ∆t

t

)n−m
. (11.2.3)

Now,

µ = np =
n∆t

t
= λt. (11.2.4)

For small ∆t and large n,

p(m) ≈ (λ∆t)m

m!
e−λ∆t, (11.2.5)

where λ = n/t is the number of particles per bin. The above equation is known as the Poisson
distribution. This is applicable to many things including chemical reactions, waiting times
in restaurants, etc.

Continuous Random Variables

For continuous random variables , the values are no longer discrete but can take on any
number. We will substitute summation with integration. Now a probability is expressed
with p(x) dx and gives us the probability of finding a particular realization of a random
variable in an interval,

p(x) dx = Prob [x ≤ X ≤ x+ dx] . (11.2.6)

Then to find over the domain [a, b],

Prob [a ≤ X ≤ b] =

ˆ b

a

p(x) dx . (11.2.7)

To normalize the system, ˆ ∞
−∞

p(x) dx = 1. (11.2.8)

This is the continuous equivalent to the summation,
∑n

j=1 p(Ej) = 1.
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We will also have the cumulative probability,

P (x) = Prob [X ≤ x] . (11.2.9a)

This gives us the probability to find X less than some value x.

=

ˆ x

−∞
p(X) dX . (11.2.9b)

The two integrals are easily related as

dP (x)

dx
= p(x). (11.2.10)

In the literature, the cumulative probability is often called the integral probability , while the
other probability is the differential probability .

As an interesting physical example we can consider the distribution of particle sizes in a
suspension, you can measure the weight change with time on the balance. The large particles
(few of them) will hit first, then the middle range will come (there will be the most of them),
and finally the small ones will drop down.

Now say we have a function of the random variable f(x), we may want the average,

E {f(x)} =

ˆ +∞

−∞
p(x)f(x) dx . (11.2.11)

The average is defined,

µ =

ˆ +∞

−∞
xp(x) dx . (11.2.12)

The central moments are thus defined,

E {(x− µ)m} =

ˆ +∞

−∞
(x− µ)mp(x) dx . (11.2.13)

We may also have multi-variate functions, for example x and y may both be random
with a function f(x, y). Now if we have a particle on a lattice, the x and y jumps may be
completely independent. To find the average, we must integrate the function over x and y
independently. In analogue to the single variable system,

p(x, y) dx dy = Prob [x ≤ X ≤ x+ dx ; y ≤ Y ≤ y + dy] . (11.2.14)

Consequently the average is,

E {f(x, y)} =

ˆ +∞

−∞

ˆ +∞

−∞
f(x, y)p(x, y) dx dy . (11.2.15)

Now say we only integrate over one variable,
ˆ +∞

−∞
f(x, y)p(x, y) dy = p(x). (11.2.16)
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If the inputs for X and Y are independent then,

E {X + Y } = E {X}+ E {Y } , (11.2.17)

and
Var [X + Y ] = Var [X] + Var [Y ] . (11.2.18)

While,
E {XY } = E {X}E {Y } , (11.2.19)

If they are dependent we may find a correlation coefficient. Let

E {X} = µx, (11.2.20a)

E {Y } = µY . (11.2.20b)

Then,

E
{

(X − µx)2
}

= σ2
x, (11.2.21a)

E
{

(Y − µy)2
}

= σ2
y. (11.2.21b)

The co-variance is thus,

Cov [X, Y ] = E {(X − µx) (Y − µy)} , (11.2.22a)

= ρxyσxσy. (11.2.22b)

if ρxy ≡ 0 then X, Y are independent. Then

−1 ≤ ρxy ≤ 1. (11.2.23)

The Normal Distribution

The Gaussian or normal distribution is given with,

p(x) dx =
1

(2πσ2)1/2
e

(x−µ)2

2σ2 dx (11.2.24)

The normal distribution is not all that special, but it does arise in the parabolic PDEs.
Examples include the heat equation, diffusion equation, Stokes equation. The Gaussian
distribution gives the Greens function of these equations. e.g.,

∂T

∂t
= α

∂2T

∂x2
. (11.2.25)

Einstein used this for the diffusion of Brownian motion. He assumed that a particle can
move in any direction completely independently (which is not always true). The central limit
theorem also says that distributions of a random variable will have a normal distribution.

The cumulative distribution,

P (x) =
1

(2πσ2)1/2

ˆ ∞
−∞

e
z2

2 dx , (11.2.26a)

=
1

2

[
1 + erf

x√
2

]
. (11.2.26b)
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µ−σ +σ
x

p(x)

Figure 11.9. The normal distribution

If we tighten the variance the function will become more narrow. In the limit of small σ this
is an excellent approximation of a delta function,

lim
σ→0

p(x) = δ(x− µ). (11.2.27)

Further let’s consider the generalization for two variables,

p(x, y) dx dy =
1

2πσxσy
(
1− ρ2

xy

)1/2
exp

− x2

σ2
x

+ y2

σ2
y
− 2ρxyXY

σxσy

2(1− ρ2
xy)

. (11.2.28)

ρ2
xy =

σ2
xy

σxσy
, (11.2.29a)

σ2
x = E

{
(X − µx)2

}
, (11.2.29b)

σ2
y = E

{
(Y − µy)2

}
, (11.2.29c)

σ2
xy = E {(X − µx)(Y − µy)} . (11.2.29d)

Characteristic Functions

if we are given p(x),

φ(s) = E
{

eisx
}

=

ˆ +∞

−∞
eisxp(x) dx . (11.2.30)

This is related to the Fourier Transform. We may use some special properties of characteristic
function,

φ(n)(0) = inE {Xn} . (11.2.31)

This allows you to calculate the moments of the system very easily with φ(s). If we take the
Maclaurin series,

φ(s) = φ(0)︸︷︷︸
i0E{x0}

+φ′(0)︸︷︷︸
iE{x}

s+
1

2!
φ′′(0)︸ ︷︷ ︸
i2E{x2}

s2 + · · · . (11.2.32)
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Then,

p(x) =
1

2π

ˆ ∞
−∞

e−isxφ(s) ds . (11.2.33)

for µ 6= 0.

φ′(0) = iµ, (11.2.34a)

φ′′(0) = −µ2 − σ2, (11.2.34b)

φ′′′(0) = i3
(
µ3 + 3µσ2

)
. (11.2.34c)

Φ(s) =
1√

2πσ2

ˆ ∞
−∞

eis(x−µ)e−
(x−µ)2

2σ2 dx . = e−
σ2s2

2 . (11.2.35)

Φ′(0) = 0, (11.2.36a)

Φ′′(0) = σ2, (11.2.36b)

Φ′′′(0) = 0. (11.2.36c)

Stochastic Processes

A good resource for literature on stochastic process include:

1. S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1

Chandrasekhar won the Nobel for calculating the critical mass of a star. The article is
a well cited review of the topic.

2. N. G. van Kampen Stochastic Processes in Physics and Chemistry, Elsevier.

The book has a chapter on stochastic processes in quantum systems.

3. C. Gardiner, Handbook of Stochastic Methods, Springer.

Gardiner was a post-doctoral assistant of Donald MacQuarrie. This book has good
overview of Brownian motion and the physical motivations. Also the text includes a
review on Langevin’s paper.

Mathematical Statistics

This field allows us to analyze a system to find a distribution which represents the real
population, with an estimate of error. We may use this for systems such as statistical
mechanical systems. When we have, say, 1023 atoms it is impossible to find exactly the
behavior of the system, however we may use the statistical effect of the parts of the system.
Then all we need to know are things such as the temperature, pressure, volume, etc. to
determine the behavior of the system. The probabilities associated with the system will be
very accurate for such large quantities. The Gaussian distribution becomes much like a delta
function.
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n ∼ O(1023)

Figure 11.10. In a molecular system the size of n is large

Statistics and probability seem to be inherent to quantum mechanics, whereas in most
other systems it appears as an emergent phenomenon. This brings the question of whether
statistical systems are fundamental to nature.

In statistics, we will do the following. We will consider the probability distribution as
the key function of the system, f(x, θ).

θ̂ = θ̂ (x1, x2, x3, . . . , xn) . (11.2.37)

We will always be limited to some sample. This is referred to as sample statistics. The
average of the samples is defined,

x̄ =
x1 + x2 + x3 + · · ·+ xn

n
= µ̂. (11.2.38)

This must be distinguished from the average since it is based on a small sample. So then
we care about the error of the samples. This is illustrated in the fact that often the data is
plotted with error bars. The variance is calculated;

ŝ2 =
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2

n− 1
(11.2.39)

Here the variance is better estimated by deciding by n− 1 instead of n.
Next class is our last class, with finals afterward.
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Mathematical Statistics (cont.)

Consider a set of finite or large (or possibly infinite) possible values of a random variable.
Since we may not handle all possible values, we will take a sample to use as the representative
measure of the whole set. This sample allows us to find a parameter, θ̂ = θ̂(x1, x2, . . . , xn),
which is in some way a useful measurement of the set. Consider as an example the mean,

x̄ =
x1 + x2 + · · ·+ xn

n
= µ̂. (11.3.1)

We may consider doing an infinite number of measurements, but of course in the real world
we would stop short at a smaller value. We may then be interested in the average, but we
cannot consider it to be the true expected value so we indicate it with µ̂. It is based on the
particular number of measurements you have done, and the more more measurements taken
the better the resulting approximation of the expected value.

Now the average quality defined by the average may be used in the standard deviation
(which is the root of the sum of the squared deviations, decided by the number of samples),

Ŝ2 =
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2

n− 1
. (11.3.2)

Note that for a sample, the standard deviation will usually be closer to the population
standard deviation if we divide by n− 1 instead of n. This gives us a quantity similar to the
population standard deviation;

Ŝ2 = σ̂2. (11.3.3)

Thus a quantity in general,
θ̂ = θ̂(x1, x2, . . . , xn), (11.3.4)

which is based on all random realizations of an event, is called an estimator , and it is an
estimator for the particular parameter θ. Thus,

µ̂ =
X1 +X2 + · · ·+Xn

n
, (11.3.5)

is an estimator of the mean, or

E {µ̂} =
1

n
[E {X1}+ E {X2}+ · · ·+ E {Xn}] . (11.3.6a)

Recalling that E {Xi} = µi, then

1

n

∑
i

E {Xi} =
1

n
nµ, (11.3.6b)

= µ. (11.3.6c)

If the estimator for the quantity equals the quantity itself, or E {θ} = θ, then the estimator
is said to be unbiased. There is an example in the text on page 1077, (Example 1), which
deals with the issue of a biased estimator.

215



Petsev and Benner Unit 11. Chapters 21 & 22—Probability and Statistics

The estimator is expected to become better as the sample increases, or

lim
n→∞

E
{
θ̂n

}
= θ. (11.3.7)

If we look at the deviation,

lim
n→∞

[(
θ̂n − θ

)2
]

= 0. (11.3.8)

In other words the greater the sample the better the accuracy.

Determination of Estimators

We discuss the maximum likelihood method (MLM) for the determination of estimators.
Let’s now look into how the estimator is determined. If we have a function that depends

on some random variables and gives a parameter of interest, f(x; θ), then if X1, X2, . . . , Xn

are independent random variables we can define a function,

L(X1, X2, . . . , Xn; θ) = f(X1; θ)f(X2; θ) · · · f(Xn; θ). (11.3.9)

We have here considered that since the variables are independent then their probabilities
will be a product. So each probability tells us how likely it is to have the variable to satisfy,

x1 ≤ X1 ≤ x1 + dx1 . (11.3.10)

So we can write these probabilities for all variables. Now, L is the likelihood function and
we want to maximize it with respect to θ. We want to maximize the joint probability with
respect to the parameter. The condition for an extremum is that the derivative must be
zero; for maxima (not a minimum or inflection point) the second derivative must be less
than zero. In equation form,

∂L

∂θ
= 0; (11.3.11a)

∂2L

∂θ2
< 0. (11.3.11b)

Then we will have a maximum for θ = θ̂. Now if the function L peaks at a particular point,
then the logarithm of the product of f(Xi; θ) will also peak at that same point. This is
because the logarithm is a monotonic function, so if we have a function F (θ) then ln(F (θ))
will peak at the same value of θ. Since we are not so much interested in the value of the
function, but in where we exhibit the maximum in θ the logarithm of the function will suffice.
This is a useful property that is often applied in statistical mechanics. Note that we cannot
have a probability of zero if we are to do this because otherwise the log of zero is infinite
and we have no solution. Now replacing L(θ) with ln(L(θ)),

∂ ln(L)

∂θ
= 0; (11.3.12a)

∂2 ln(L)

∂θ2
< 0. (11.3.12b)

So we have similar equivalents.
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r

y

1

ln(r)

Figure 11.11. Logarithmic function

Poisson Distribution

As a case study, we may look at the Poisson distribution. The parameter of interest is λ,
where we define a function,

L(λ) =
λX1e−λ

X1!

λX2e−λ

X2!
· · · λ

Xne−λ

Xn!
. (11.3.13)

These probabilities on the right hand side correspond to each of the f(Xi; θ) functions given
above. Taking the logarithm, the products are reduced to sums;

ln(L(λ)) =

(
n∑
i=1

Xi

)
ln(λ)− nλ−

n∑
i=1

ln(Xi!). (11.3.14)

Now we will take derivatives with respect to λ, so we may ignore the intimidating term with
the factorials.

∂ ln
(
L(λ̂)

)
∂λ̂

=

(
n∑
i=1

Xi

)
1

λ̂
− n = 0. (11.3.15)

This must be zero to be an extrema. Rearranging,

λ̂ =
X1 +X2 + · · ·+Xn

n
. (11.3.16)

In other words we obtained the fact that λ is the mean. Nevertheless, it is the parameter of
interest.

Now the question is is the second derivative criterion fulfilled? Taking the second deriva-
tive at the location of λ or the mean,[

∂2 ln(L)

∂λ2

∣∣∣∣
λ=x̄

= − n
X
< 0. (11.3.17)

This may be extended for other population parameters, with several examples in the text
book.
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Normal Distribution

Returning to the normal distribution we will look at several important properties. Defining,

p(x) dx =
1

(2πσ2)1/2
e−

(x−µ)2

2σ2 dx (11.3.18)

The first term is from the normalization. If we define,

z =
x− µ
σ

, (11.3.19)

when we replace the variables, we rescale such that the mean is at the origin and the z axis

µ−σ +σ
x

p(x)

Figure 11.12. The normal distribution

is scaled with the standard deviation. This simplifies our expression significantly;

p(z) dz =
1

(2π)1/2
e−

z2

2 dz . (11.3.20)

This is important to generate random numbers which are normally distributed, which is
useful in Brownian dynamics and Monte Carlo. Recall that this the function expression
is a natural solution for diffusive systems. Due to the collisions between particles, the
particles move around similarly to a normal distribution. In other words it is less likely for a
particle to move a large distance than a small one (though it is usually not forbidden). We
can simulate this with gaussian random noise by taking the randomly generated numbers
from the computer language that we are working with and reforming it using the gaussian
distribution. In these methods and algorithms they usually use the formulation with z and
then the program (or you the user) may translate it back into the form of your specific
problem with x. This is called the standardized distribution.

Now say we have a variable X with a given µx and σ2
x, with another variable Y =

C1X + C2. How will the variable Y behave? If X is itself normal, then Y will also have a
normal distribution. Then the expected value for Y ,

µy = C1µx + C2, (11.3.21a)

σ2
y = C2

1σ
2
x. (11.3.21b)
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These properties may be shown by substitution of the definition of Y into the equation of the
Gaussian distribution and and simplifying. We may also have a possible more complicated
situation of many variables; then

X = X1 +X2 + · · ·+Xn, (11.3.22)

and the expected value is similarly a sum of the expected values,

µ = µ1 + µ2 + · · ·+ µn, (11.3.23a)

σ2 = σ2
1 + σ2

2 + · · ·+ σ2
n. (11.3.23b)

Now consider that the average of a sample may be a sum,

X̄ =
X1 +X2 + · · ·+Xn

n
, (11.3.24)

where each Xi has its own mean, µi, and variance σ2
i . Then, X will have a mean X̄ = n

and variance σ2

n
. So here we again arrive at a conclusion that as we increase the number of

measurements, the variance will decrease and give a better approximation of the mean for
finite number of measurements.

Confidence Intervals

The final thing we will discuss is confidence intervals. A confidence interval is intended
to answer the question: What is the probability to find our variable within certain limits?
With a given distribution (such as the normal distribution), we may look at how this may
be found. So say we have a parameter θ and we want to know,

η = Prob[θ1 ≤ θ ≤ θ2]. (11.3.25)

Here η is called the confidence level . The bracketed area between [θ1, θ2] is the confidence
interval . So how do we find these?

Say for example, we have θ1 = +a and θ2 = −a. We decide to have a mean of 0 and
a symmetric confidence interval. So what is the probability in this area? Clearly this is an
integral and is easy to find. In other words going from a given value of a to find η is very
clear, but the inverse problem is more difficult. Now if instead we want to find a when given
a value of η, in other words we want to know what the probability of events happening are.
The probability to find the variable within the limit is the integral,

Prob [−a ≤ x ≤ a] =
1

(2π)1/2

ˆ a

−a
e−

x2

2 dx = η. (11.3.26)

Hence the integral can give the value of η. So it is a problem that will have to be inverse
of what you may expect. Now the values of a for a given η is tabulated for several common
confidence values such as 95% and 99%. These may be found instead by iteration or trial
and error if desired.
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x̄x̄− s x̄+ sx̄− a x̄+ a
x

p(x)

Figure 11.13. Determination of a confidence interval

So say we select a sample of n measurements, x1, x2, x3, . . . , xn and we determine the
mean and variance,

x̄ =
x1 + x2 + x3 + · · ·+ xn

n
, (11.3.27a)

s2 =

∑n
i=1(xi − x̄)

n− 1
. (11.3.27b)

Then we may decide what we want as the value of the confidence interval to be (such also
95%). Finally, we may find the value of a by trial and error or writing a numerical program
to compute it iteratively. It may also be in tables. In steps we may list this as:

1. Gather n samples

2. Find the mean

3. Find the variance

4. Decide on η

5. Find a

This concludes the lecture materials for this course.
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thermodynamics, 6, 141
enthalpy, 142
first law, 151
Gibbs free energy, 142
Helmholtz free energy, 142

Uhlenbeck, 52
unit tensor, 12

van Dyke matching principle, 188
variance, 204
variation of parameters, 41

wavevector, 117
wronskian, 40, 42

223



Petsev and Benner Index

224



Figures

2.1 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Natural unit vectors in Cartesian coordinates . . . . . . . . . . . . . . . . . . 22
2.3 Polar coordinates with unit vectors . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Biconical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Bi-polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Variation of interaction of two particles in three dimensions . . . . . . . . . . 47
3.2 Two dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Behavior of 3D solution nearing the singularity at zero . . . . . . . . . . . . 49
3.4 Brownian motion of a particle force over time . . . . . . . . . . . . . . . . . 50
3.5 Range of time over which observation is taking place . . . . . . . . . . . . . 51

6.1 Forcing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.1 Parabolic plot of F (u) versus u for positive epsilon with corresponding v and
u phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.2 Plot of F (u) versus u for negative epsilon with corresponding v and u phase
diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3 Uniform flow around a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.4 Rotational and irrotational flow systems . . . . . . . . . . . . . . . . . . . . 175
10.5 Non-uniform flow around a cylinder . . . . . . . . . . . . . . . . . . . . . . . 175
10.6 Uniform flow around a cylinder with radial coordinates . . . . . . . . . . . . 176
10.7 Non-uniform flow around a cylinder with radial coordinates . . . . . . . . . . 177
10.8 Uniform flow around an elliptical cylinder . . . . . . . . . . . . . . . . . . . 180
10.9 Boundary layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.10Plot second order system with small parameter . . . . . . . . . . . . . . . . 184
10.11Plot second order system with small parameter . . . . . . . . . . . . . . . . 186
10.12Comparison of inner, outer, and true solutions . . . . . . . . . . . . . . . . . 188
10.13Capillary with electrokinetic effects (stereoscopic images) . . . . . . . . . . . 189
10.14Plot of potential with x in capillary . . . . . . . . . . . . . . . . . . . . . . . 193
10.15Capillary with electrokinetic effects . . . . . . . . . . . . . . . . . . . . . . . 195

225



Petsev and Benner Figures

10.16Capillary fluids driven by electric fields . . . . . . . . . . . . . . . . . . . . . 198

11.1 Venn diagram of related sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.2 Brownian particle on a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.3 Independent outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
11.4 Cumulative distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.5 Several occupied states on a lattice . . . . . . . . . . . . . . . . . . . . . . . 205
11.6 Binomial distribution for n = 20 trials; cumulative probability of twelve or

fewer heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.7 Binomial and log of binomial distribution for n = 20 and p = 0.25 . . . . . . 207
11.8 Probability narrowing toward δ-function with increasing sample size n. Bi-

nomial distribution with p = 0.35 for changing n while graphing with equal
areas: n = 10 (blue), n = 40 (red), andn = 160 (green). . . . . . . . . . . . . 208

11.9 The normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
11.10In a molecular system the size of n is large . . . . . . . . . . . . . . . . . . . 214
11.11Logarithmic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.12The normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.13Determination of a confidence interval . . . . . . . . . . . . . . . . . . . . . 220

226



Tables

2.1 Four dimensional spherical coordinates: vector and variable relations . . . . 34

227


	Forward
	Chapter 7—Vector Calculus
	Lecture 1: August 20, 2012
	Fields
	Gradients
	Contours
	Surface Integral
	Laplace operator
	Potential Flow
	Line Integrals

	Lecture 2: August 22, 2012
	Potential Field
	Application to Thermodynamics
	Newton's Second Law
	Gauss Law; Line integral example
	Radial Potential
	Green's Theorem

	Lecture 3: August 27, 2012
	Notes about class
	Greens Theorem, cont.
	Tensors and Tensor Algebra
	Tensor Algebra

	Lecture 4: August 29, 2012
	Contraction
	Tensor Product
	Covariant and Contravariant tensors


	Chapter 8—Curvilinear Coordinates
	Lecture 4 (cont.)
	Overview
	Metric Coefficients

	Lecture 5: September 5, 2012
	Metric coefficients, cont.
	Metric coefficients—Generalization
	Cylindrical coordinates
	General Coordinates

	Lecture 6: September 10, 2012
	Review of Metric Coefficients
	Generalized Differential Operators
	Four Dimensional Spherical Coordinates
	Metric Coefficients
	Differential Operators
	Orbitals in a General Dimensional Space
	Volume of 4D sphere


	Chapter 11—Differential Equations
	Lecture 7: September 12, 2012
	Linear First Order ODEs
	Integrating Factors
	Example
	Bernoulli Equation
	Homogeneous Linear Differential Equations with Constant Coefficients
	Non-homogeneous ODEs
	Method of Undetermined Coefficients
	Method of Variation of Parameters

	Lecture 8: September 17, 2012
	Method of Variation of Parameters
	Example: Capillary electrostatics
	Method of Green's Functions

	Lecture 9: September 19, 2012
	Greens Functions, cont.
	Example: Schrodinger's Equation and Quantum Mechanics
	Brownian Motion and Stochastic Equations

	Lecture 10: September 24, 2012
	Example: Langevin Equation, cont.


	Chapter 12—Series Solutions of ODEs
	Lecture 10, cont.
	Series solutions
	Power Series
	Ordinary and Singular Points
	Example: Harmonic Oscillator

	Lecture 11: September 26, 2012
	Review: Harmonic Oscillator
	Example: Harmonic Quantum Oscillator
	Comparison of Classical and Quantum Oscillators

	Lecture 12: October 1, 2012
	Legendre Equation
	Series Solutions near an Ordinary Point
	Illustration of method
	Bessel Equation and Bessel Functions


	Chapter 14—Orthogonal Functions and Sturm–Liouville Theory
	Lecture 13: October 3, 2012
	Orthogonal Functions
	Some examples of orthogonal functions
	Legendre Polynomials
	Example: Electrostatics

	Lecture 14: October 8, 2012
	Orthogonal Polynomials, A General Case
	Gramm–Schmidt Orthogonalization
	Sturm–Liouville Theory
	Types of Sturm–Liouville Problems
	Eigenfunctions

	Lecture 15: October 10, 2012
	Greens Functions for Non-homogeneous Equations
	Example of a Greens function problem
	Example: Non-homogeneous Helmholtz equation


	Chapter 15—Fourier Series
	Lecture 16: October 15, 2012
	Case 1. Homogeneous boundary conditions
	Case 2. Newman boundary conditions 
	Example using Dirac Delta function

	Lecture 17: October 17, 2012
	Newton's Equation of Gravitational Motion
	Elliptic Coordinates
	Non-homogeneous differential equations
	Example: Wave equation


	Chapter 16—Partial Differential Equations
	Lecture 18: October 22, 2012
	1. Elliptic PDEs
	2. Hyperbolic PDEs
	3. Parabolic PDEs
	Initial and Boundary Conditions
	Example: Oscillating String

	Lecture 19: October 24, 2012
	Example: Membrane vibration in cylindrical coordinates 
	Maxwell Equations and Propogation of Electromagnetic Waves

	Lecture 20: October 29, 2012
	Parabolic and Elliptic Differential Equations
	Example: Elliptic partial differential equation
	Example: Transient parabolic equation with source term 

	Lecture 21: November 5, 2012
	Example: Heat transport in spherical coordinates
	Example: Flow in a cylindrical pipe


	Chapter 17—Integral Transforms
	Lecture 22: November 7, 2012
	Laplace transform
	Example: Oscillator equation
	Example: System of chemical reactions
	Example: Heat transfer

	Lecture 23: November 12, 2012
	Example: Diffusion Equation
	Convolution Integral
	Fourier Transform
	Example: Gaussian distribution
	Derivative transforms
	Example: Infinite Insulated Rod

	Lecture 24: November 14, 2012
	Convolution Theorem
	Example: Radial distribution function
	Transform of differential operators
	Spherical Coordinates
	Polar Coordinates
	Parsifal Theorem

	Lecture 25: November 19, 2012
	Momentum Representation
	Example: Pulse Propagation
	Example: Quantum Oscillator
	Example: Total solution of the diffusion equation


	Chapter 20—Calculus of Variations
	Lecture 26: November 26, 2012
	Definitions
	The Euler Equation
	Example: Brachistrone Problem

	Lecture 27: November 28, 2012
	Example: Classical Mechanics
	Example: Double pendulum
	Integrals of Motion—Conservation of Energy

	Lecture 28: December 3, 2012
	Example: Low density gas
	Constrained minimization and maximization
	Variations with Constraints
	Example: Hanging Cable

	Lecture 29: December 5, 2012
	Example: Hanging Cable, cont.
	For final exam


	Asymptotic Analysis and Perturbation Theory
	Lecture 26: November 18, 2013
	Asymptotic Perturbation Techniques for Solving Nonlinear Differential Equations
	Asymptotic Example: Navier–Stokes Equations
	Zero Order
	First Order
	Second Order
	Asymptotic Example: Duffing Equation

	Lecture 27: November 20, 2013
	Homework 7 problem 4
	Asymptotics Example: The Duffing Equation (cont.)
	Exact solution of the Duffing Equation
	Comparison to the Linear Oscillator
	Exact Solution of Damped Linear Oscillator

	Lecture 28: November 25, 2013
	Example from Fluid Mechanics
	Uniform Flow Around a Cylinder
	Non-constant Gradient of Velocity Around Cylinder
	Non-circular body
	Singular Perturbations
	Example of Singular Perturbations: Matched Asymptotic Expansion

	Lecture 29: November 27, 2013
	Singular Asymptotic Solution of Second Order Differential Equation (cont.)
	Example: Electro-kinetics in a Cylindrical Capillary

	Lecture 30: December 2, 2013
	Example: Electro-kinetics in a Cylindrical Capillary (cont.)


	Chapters 21 & 22—Probability and Statistics
	Lecture 30: November 26, 2014
	Probability and Stochastic Processes
	Mean Values (Expected value)
	Coin Toss

	Lecture 31: December 1, 2014
	Binomial Distribution
	Continuous Random Variables
	The Normal Distribution
	Characteristic Functions
	Stochastic Processes
	Mathematical Statistics

	Lecture 32: December 3, 2014
	Mathematical Statistics (cont.)
	Determination of Estimators
	Poisson Distribution
	Normal Distribution
	Confidence Intervals


	Index
	Other Contents

